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3Ryan Hanley Ltd, 1 Galway Business Park, Dangan, Galway H91 A3EF, Ireland
4Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

Correspondence: Vanja Travaš (vanja.travas@uniri.hr)

Received: 2 July 2022 – Discussion started: 15 August 2022
Revised: 25 February 2023 – Accepted: 11 March 2023 – Published: 28 March 2023

Abstract. To examine the effectiveness of various techni-
cal solutions for minimizing the adverse effects of saltwa-
ter intrusion in Lake Vrana, Croatia, a reliable mathemat-
ical model for describing the exchange of fresh- and salt-
water between the lake and its surroundings is needed. For
this purpose, a system of two ordinary and nonlinear dif-
ferential equations is used. The variable coefficients repre-
sent hydraulic conductivity functions that are used to quan-
tify groundwater flow and should be appropriately estimated
by relying on data obtained by in situ measurements. In the
abstract space of all possible hydraulic conductivity func-
tions, the method of particle swarm optimization was used to
search for functions which will minimize the difference be-
tween the predicted (modeled) and realized (measured) water
surface elevation in the lake through the time span of 6 years
(which includes relevant hydrological extremes – droughts
and floods). The associated procedure requires the param-
eterization of conductivity functions which will define the
number of dimensions of the search space. Although the con-
sidered mass exchange processes are significantly nonlinear,
and the parametrization of hydraulic conductivity functions
can define a search space with a relatively large number of di-
mensions (60 dimensions were used to estimate the hydraulic
conductivity functions of Vrana lake), the presented example
confirms the effectiveness of the proposed approach.

1 Introduction

Water management in karst areas near the sea usually re-
quires modeling water quantity and quality under different
hydrological conditions (Bakalowicz, 2005). Karst area wa-
ter resources are endangered by global littoralization pro-
cesses and also by negative anthropogenic impacts through
which the requirements for freshwater quantities are progres-
sively increasing. At the same time, natural processes man-
ifested through climate change also negatively affect karst
water resources by (i) raising sea levels (which can endanger
freshwater quality), (ii) reducing precipitation (on the basis
of which such sources are fed), and (iii) rising air tempera-
tures (increasing the amount of freshwater evaporation). All
this obliges us to prioritize the protection of such water re-
sources, which in part requires the mathematical modeling
of water flow in karst conduits. In this context, the atten-
tion in the paper is given to a specific problem of estimating
the unknown hydraulic conductivity functions by which the
groundwater flow in karst conduits is computed in the frame-
work of semi-distributed lumped karst models. The related
computational framework is well established (Gunn, 1986;
Bergström and Forsman, 1973) and, in many cases, suc-
cessfully implemented (Fiorillo, 2011; Gàrfias et al., 2007;
Fleury et al., 2007). Moreover, the semi-distributed lumped
karst models is particularly interesting in the case of poorly
characterized karst aquifers. By representing the karst aquifer
as a finite number of interconnected reservoirs (also known
as hydrological compartments), the flow through karst con-
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duits is represented as a consequence of the difference in wa-
ter levels in interconnected reservoirs. In order to quantify
the achieved water flow, the related heterogeneous hydrogeo-
logical properties are usually homogenized and described by
parameters dependent on flow characteristics such as water
level. As a consequence, the hydrological data are not spa-
tially distributed, and the simplified karst aquifer description
relies on model calibration.

If the continuous time series of relevant hydrological data
is known in advance (which was the case for the considered
research area), then the application of the principle of con-
servation of mass is very attractive for modeling the time
change in water level in karst region. In this case, the dy-
namic behavior of such systems is described by a nonlinear
first-order ordinary differential equation (ODE) with variable
coefficients (or a system of ODEs). The variable coefficients
should be determined from model calibration. Since the sys-
tem is described by nonlinear ODEs, the calibration methods
are based on the assumption that a karst aquifer represented
by a connected series of linear reservoirs cannot be used. In
these cases, the calibration of the semi-distributed lumped
karst model can be very challenging. Although, in such cir-
cumstances, the model calibration procedure usually begins
with a naive trial and error approach (Rimmer and Salin-
gar, 2006), which is effective only in rare cases. Namely,
the model variables are usually very sensitive to changes in
calibration functions (which depend on model variables). As
an alternative, several methods have been developed for this
purpose. A commonly used approach is based on a statis-
tical and correlation time series analyses of the measured
hydrological data related to karst aquifers (Dubois et al.,
2020). However, in cases of strongly nonlinear dependencies,
it is inevitable to base the calibration process on some auto-
correction method which relies on a definition of efficiency,
like the Nash–Sutcliffe efficiency measure, or some modifi-
cations thereof (Charlier et al., 2012).

Regardless of the adopted approach, the success of the
model calibration can depend on the number of parameters
that are subject to calibration. Namely, for a semi-distributed
lumped karst model in which the exchange of water between
an interconnected karst region is modeled by more than one
ODE, different values of calibration parameters can result
in a similar model prediction (Wheater et al., 2022; Ye et
al., 1997). In other words, there may be multiple solutions
(known as multimodality), which consequently leads to un-
reliability in the physical interpretation of the model param-
eters (Beven, 2006). In order to reduce the influence of over-
parameterization and obtain a unique solution, the number
of all possible solutions should be reduced by introducing
additional constraint conditions imposed on the calibration
parameters. If no generic property can be defined for a partic-
ular calibration parameter by which the constraint condition
can be formulated, then the additional constraint conditions
are obtained through an analysis of the relative relationships
between the available hydrological time series (which is of-

ten carried out by correlation and cross-correlation analyses).
In other words, solving multimodal problems most often re-
quires the application of an algorithm for pattern recognition
in the available hydrological time series. For this reason, it
should not be surprising that artificial neural networks (Kur-
tulus and Razack, 2010; Hu et al., 2008; Coppola et al., 2003;
Coulibaly et al., 2001) and different machine learning meth-
ods (Wunsch et al., 2022) have found their application in the
calibration of semi-distributed lumped karst models. How-
ever, the mentioned approaches are not that suitable in cases
where the constraint conditions are known in advance and
are given in the form of mathematical inequalities (as was the
case in this paper). In such cases, it is opportune to treat the
calibration of model parameters as an optimization problem
(Beasley et al., 2012) in which multimodality is commonly
encountered. In such circumstances, the calibration of model
parameters requires the definition of an objective function
that is dependent on design variables (i.e., model parame-
ters). Since the objective function is usually defined as a mea-
sure of difference between the considered predicted value
and the one obtained by field measurements, the calibration
of model parameters is reduced to its minimization. For this
purpose, the domain of the objective function is searched in
an iterative fashion. Unless a specific search (local search) of
the domain of the objective function is expected, the parame-
ters of a karst model can be effectively calibrated by genetic
algorithms (Lu et al., 2018). For more demanding optimiza-
tion problems, in which it is expected that the objective func-
tion has many local minima permeating throughout the en-
tire domain of the objective function (multimodality), both a
global and a local search is necessary. In these situations, the
bio-inspired algorithm known as particle swarm optimiza-
tion (PSO method) is more suitable because it is based on
a simultaneous local and global search of the domain of the
objective function (Qian et al., 2019), and so, it is very attrac-
tive for solving multimodal problems (Özcan and Yilmaz,
2007). Moreover, this approach has previously been success-
fully applied to calibrate groundwater flow models in alluvial
aquifers (Haddad et al., 2013; Mahmoud et al., 2021) and
also for calibrating flow parameters in environmental models
(Zambrano-Bigiarini and Rojas, 2020). In order to examine
the application of the PSO method and indicate the possibil-
ities it offers in the contest of karst modeling, it was applied
to the estimate the hydraulic conductivity functions used for
modeling the exchange of fresh- and saltwater in Lake Vrana,
Croatia.

2 Study area

The proposed procedure for estimating hydraulic conduc-
tivity functions has been successfully applied in quantify-
ing water flow through the bed of Lake Vrana (which is the
largest natural lake in Croatia, with a water surface area of
more than 30 km2). Lake Vrana is a cryptodepression sepa-

Hydrol. Earth Syst. Sci., 27, 1343–1359, 2023 https://doi.org/10.5194/hess-27-1343-2023



V. Travaš et al.: Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization 1345

rated from the Adriatic Sea by an narrow karst ridge (width
varying from 0.8 to 2.5 km) through which fresh- and salt-
water can be exchanged. The exchange of water is bidirec-
tional, and the orientation of the established groundwater
flow, which is important in the context of preserving freshwa-
ter quality, depends on the achieved pressure gradient along
karst conduits. In this regard, it is important to note that
the Lake Vrana water level varied from 0.03 to 2.25 m a.s.l.
(above sea level) in the time span from 1948 to 2010 (Ru-
binić and Katalinić, 2014). Although the lake water level was
above the sea level for the entire time, the risk of salinization
can be recognized by (i) the fact that the average lake water
level in the specified period was 0.83 m a.s.l. and (ii) taking
into account that the pressure gradient also depends on the
relative deference in fresh- and saltwater density (so that the
saltwater intrusion is established even at equal water levels).
Moreover, in August 2012, due to unfavorable hydrological
trends (attributed to climate change), the depth of the lake
water was only 30 cm, and a very high salinity of as much as
17 ‰ was recorded. This was a consequence of site specifics,
namely the very close proximity of the sea and the relatively
shallow water in the lake. Furthermore, it should be noted
that the lake bed at the deepest point is only 3 m b.m.s.l. (be-
low mean sea level), and thus the lake is under constant dan-
ger of salinization (Rubinić, 2014).

In addition to the information previously mentioned, it
should be emphasized that the quality and quantity of wa-
ter are also significantly affected by the presence of the
Prosika channel, through which fresh- and saltwater can
be exchanged by (i) surface flow through the channel and
(ii) groundwater flow through the porous channel bed. The
Prosika channel was originally dug in 1770 to attain new
agricultural areas near Lake Vrana that needed protection
from seasonal flooding. With a total length of 770 m and a
trapezoidal cross section, with a channel bottom width of
8 m, the Prosika channel connects Lake Vrana and the Adri-
atic Sea. The location of Lake Vrana, the Prosika channel,
and the Adriatic Sea is shown in Fig. 1. Throughout his-
tory, the Prosika channel has undergone several geometric
adaptations which led to weir of fixed height and a crest at
0.41 m a.s.l. on the downstream side of the channel (which
has the role of separating fresh- and saltwater in case the
sea is at a lower elevation). However, the fixed crest height,
which was originally determined to be a compromise be-
tween maximizing the channel flow area during flooding and
minimizing the channel flow area during saltwater intrusion,
is no longer adequate because in recent history the problem
of saltwater intrusion has repeatedly arisen.

In order to reduce the negative consequences of saliniza-
tion (or significantly reduce saltwater intrusion), it is neces-
sary to intervene in the process of exchange of fresh- and
saltwater in Lake Vrana by some technical solution. For this
purpose, the adopted technical solution should (i) increase
the storage time of freshwater in Lake Vrana (which is sup-
plied only through precipitation and surface and groundwa-

ter flow from a karst aquifer) and (ii) reduce the intrusion of
saltwater from Adriatic Sea (by surface water flow through
the Prosika channel or groundwater flow thought the porous
Prosika channel bed and Lake Vrana bed). Regardless of the
adopted technical solution, the resulting effect must be quan-
tified by comparing the volume of salt- and freshwater in
Lake Vrana under different and relevant hydrological sce-
narios. For this purpose, it is necessary to formulate a mathe-
matical model that can be used to simulate the exchange time
of fresh- and saltwater in Lake Vrana under different hydro-
logical conditions, which in turn requires a realistic descrip-
tion of the groundwater flow (while the surface flow through
the Prosika channel can be modeled relatively easily). Thus,
the modeling problem is reduced to defining the suitable hy-
draulic flow conditions in an unknown network of conduits
in the surrounding karst aquifer.

Within the basin of Lake Vrana, a few groups of rocks
can be recognized (Rubinić, 2014). First of all, these are Up-
per Cretaceous limestones (i.e., very permeable rocks within
which an underground hydrographic network has been devel-
oped). On the other hand, it is also possible to determine the
area within which the dolomites and limestones of the lower
part of the Upper Cretaceous alternate, forming a medium
permeable layer that can slow down the flow of underground
water. Finally, a large part of the basin consists of imperme-
able or very poorly impermeable flysch deposits that in some
places cause the formation of surface flows. For calibrating
the model parameters, these surface flow components will
be set based on known in situ measurements. On the other
hand, the groundwater flow components, which are realized
as a consequence of the developed hydrographic network in
the Upper Cretaceous limestones, will be modeled using the
semi-distributed lumped karst model, relying on the assump-
tion of a fully turbulent flow.

3 Research method

The semi-distributed model or pipe flow model (Gill et al.,
2021; Schmidt et al., 2014; Bailly et al., 2012; Thrailkill,
1974) was used to model the storage dynamics of Lake Vrana
and its hydrogeological connectivity with the (i) surrounding
karst basin (from which it is supplied with freshwater) and
(ii) Adriatic Sea (where freshwater from Lake Vrana sinks).
Accordingly, groundwater flow was modeled using the as-
sumption of fully turbulent and partially saturated water flow
through karst conduits in the phreatic and epihreatic zones
(Shoemaker et al., 2008; Bonacci, 1993), neglecting Darcy’s
flow component. Under these assumptions, the karst conduit
networks can be conceptualized as a system of connected
pipelines so that the relevant hydraulic parameters are re-
lated through the Darcy–Weisbach equation by introducing
hydraulic conductivity functions.

https://doi.org/10.5194/hess-27-1343-2023 Hydrol. Earth Syst. Sci., 27, 1343–1359, 2023



1346 V. Travaš et al.: Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization

Figure 1. (a) Geographical position of Lake Vrana, Croatia, and (b) a satellite view of the lake with the marked area of the Prosika channel
through which the exchange of fresh- and saltwater is conducted by surface water flow (depending on the established boundary conditions).
Map data from Google Earth and image © 2022 Maxar Technologies and CNES/Airbus.

3.1 Hydraulic conductivity function

For an ideal conduit with a circular cross section, the Darcy–
Weisbach equation can be written as follows:

ha −hb = λ
L

D

v2

2g
, (1)

where ha and hb represent the pressure heads (L) at the oppo-
site ends a and b of the conduit, λ is the Darcy’s friction co-
efficient (1), L is the length of the conduit (L),D is the diam-
eter of the conduit (L), v is the average flow velocity (L T−1),
and g is the acceleration of gravity (L T−2).

The flow rate qab through the conduit can be obtained by
multiplying the cross-sectional area A, with the average flow
velocity v from Eq. (1), thus introducing the flow model, as
follows:

qab = A

√
2gD
λL︸ ︷︷ ︸

cab(1hab)

√
ha −hb, (2)

which can be generalized to generic flow conditions. Namely,
the flow rate qab through the conduit can be related to the
square root of a pressure head difference 1hab = ha−hb on
the right-hand side by a proportionality factor cab (L5/2 T−1),
which describes the combined influence of the geometric and
kinematic properties of the flow. Moreover, since both flow
characteristic will be affected by the pressure head differ-
ence, cab can be interpreted as a hydraulic conductivity func-
tion with the argument 1hab. To generalize the flow model
with respect to the flow direction, which can change depend-
ing on the sign of the pressure head difference 1hab, Eq. (2)
can be rewritten as follows:

qab = sgn1hab · cab (1hab) ·
√
|ha −hb|. (3)

In order to include the dependence of a pressure gradient on
the difference in water density at the conduit ends, the pres-
sure head hb in Eq. (3) should be modified by a factor rρ that
represents the ratio between the density of the water ρb with
the pressure head hb and the density of water ρa with the
pressure head ha , which leads to the flow model, as follows:

qab = sgn1hab · cab (1hab) ·
√
|ha − rρhb|, (4)

where the hydraulic conductivity function cab(1hab) should
be estimated by inverse modeling (Li et al., 2018; Nemato-
lahi et al., 2018), which means relying on the available data
obtained from in situ measurements. It should be pointed out
that the functions under consideration can be highly nonlin-
ear due to the nonlinear effect of friction (for flow in pipes
defined by the Colebrook equation) and, even more so, due
to the change in the geometry of the conduit network that can
vary as a function of surface water and groundwater level.

3.2 Conceptual model

The freshwater and seawater exchange between Lake Vrana
and the Adriatic Sea, in addition to the exchange of fresh-
water between Lake Vrana and its surrounding karst aquifer,
can be described by Eq. (4). For this purpose, the mathemat-
ical model must include three variables, namely the (i) sea
level hs, (ii) lake water level hl, and (iii) karst groundwa-
ter level hk. Within a given time domain, the change in sea
level hs, as described by function hs(t) over time t , is given in
advance, and the functions hl(t) and hk(t) will be treated as
unknown quantities that will be approximated for the given
initial and hydrological conditions. The corresponding semi-
distributed lumped karst model will result in a system of
three interconnected reservoirs that are introduced to con-
ceptually represent the hydrological compartments of (i) the

Hydrol. Earth Syst. Sci., 27, 1343–1359, 2023 https://doi.org/10.5194/hess-27-1343-2023
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Figure 2. A conceptual model used to describe the storage dynamics of Lake Vrana and its hydrogeological connectivity with (i) Adriatic
Sea and (ii) surrounding karst aquifer.

Adriatic Sea, (ii) Lake Vrana, and (iii) the karst aquifer.
The relative relationship between the introduced hydrolog-
ical compartments, with the corresponding degrees of free-
dom hs, hl and hk, and their interconnected flow components
are illustrated in Fig. 2.

Apart from the groundwater flow components, the concep-
tual model should also include the exchange of water be-
tween the introduced hydrological compartments achieved
by surface water flow. Namely, the surface water compo-
nent plays an important role because it feeds Lake Vrana
with freshwater (like the groundwater flow component from
the karst aquifer). On the other hand, the surface flow com-
ponent between Lake Vrana and the Adriatic Sea, achieved
through the Prosika channel, can adversely affect the quantity
and quality of water in Lake Vrana. Namely, in the case of
downstream flow (from the lake towards the sea), the quan-
tity of freshwater in Lake Vrana is reduced, thus increasing
the relative difference in the variables hs and hl in the un-
favorable direction. Otherwise, in the case of upstream flow
(from the sea towards the lake), the percentage of saltwater
in the lake will increase. These situations, and in the case in
which there is no surface flow through the Prosika channel,
will depend on the boundary conditions at the channel ends,
which should be included in the corresponding mathematical
model.

3.3 Mathematical model

To formulate a formal mathematical representation of the
previous conceptual model, a principle of mass conserva-
tion can be applied to reservoirs introduced to model the lake
water level hl and groundwater level hk in the surrounding
karst aquifer. Accordingly, a principle of mass conservation
for groundwater in the karst aquifer requires the following:

Ak (hk)
dhk

dt
= qk,pr︸︷︷︸

given

−1hkl · ckl (1hkl) ·
√
|hk−hl|︸ ︷︷ ︸

qkl,gw

, (5)

where the function Ak(hh) relates the groundwater level
hk (L) to the corresponding horizontal-section area Ak (L2)
of the karst conduit networks, qk,pr represents the freshwater
inflow from precipitation (L3 T−1), and qkl,qw is the ground-
water flow component between the karst conduit networks
and Lake Vrana, as calculated by Eq. (4), where ckl(1hkl)

denotes the corresponding hydraulic conductivity function
with the argument defined as 1hkl = hk−hl. It should be
highlighted that the functionAk(hh) denotes the arrangement
of the cross-sectional surface areas of crack openings in the
karst environment with respect to groundwater level and thus
includes the surfaces of karst conductors, caves, caverns, etc.
Like hydraulic conductivity functions, this function is also
unknown in advance and should be obtained by model cali-
bration which respects the characteristic of a progressive de-
crease with the rise in groundwater level (due to the dissolu-
tion process that creates larger openings in the deeper parts
of the karst).

Similarly, the principle of mass conservation for Lake
Vrana requires the following:

Al (hl)
dhl

dt
= qkl,sw+ ql,pr− ql,ir− ql,ev︸ ︷︷ ︸

given

+ qkl,gw

− qcs,sw−1hcs · ccs (1hcs) ·
√
|hc− rρhs|︸ ︷︷ ︸

qcs,gw

−1hls · cls (1hls) ·
√
|hl− rρhs|︸ ︷︷ ︸

qls,gw

, (6)
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where the function Al(hl) relates the lake water level hl (L)
to the corresponding water surface area Al (L2) in Lake
Vrana (known by in situ measurements), qkl,sw represents
the surface water inflow (L3 T−1), ql,pr is the freshwater in-
flow from precipitation on water surface area Al (L3 T−1),
ql,ir is the freshwater outflow from irrigation (L3 T−1), ql,ev is
the freshwater outflow from evaporation (L3 T−1), qcs,sw and
qcs,gw are the surface water and groundwater flow compo-
nents achieved between the Prosika channel and the Adriatic
Sea (L3 T−1), and qls,gw is the groundwater flow component
between Lake Vrana and the Adriatic Sea (L3 T−1). It should
be noted that the first four terms on the right-hand side are
known from in situ measurements.

As in Eq. (5), the groundwater flow components in this
case are computed by Eq. (4), so that ccs(1hcs) and cls(1hls)

represent the hydraulic conductivity functions for groundwa-
ter flow components achieved between the (i) Prosika chan-
nel and Adriatic Sea and (ii) Lake Vrana and the Adri-
atic Sea. However, it is opportune to note that the argu-
ment 1hls = hl−hs can be explicitly computed and that
the argument 1hcs, which represents the difference in wa-
ter level in the Prosika channel hc and sea level hs, requires
a modeling procedure through which the water surface pro-
file hs(s) along the channel station s is computed for a given
set of boundary conditions. For this purpose, a standard step
method was used. Moreover, it should be noted that the sink-
ing flow component along the channel, introduced in Eq. (6)
by the term qcs,gw, requires the hydraulic conductivity func-
tion ccs(1hcs), which was set to be linear so that the differ-
ence in water level 1hcs = 0.8 corresponds to the value of
ccs = 0.5 m5/2 s−2 (as established by in situ measurements).

By the principle of mass conservation, Eqs. (5) and (6)
form a system of two nonlinear ordinary differential equa-
tions that can be used to describe the relationship between
quantities hk and hs for a given set of initial conditions
and known hydrological parameters over the considered time
domain. However, to obtain reliable solutions, there are
three functions that should be obtained by inverse modeling,
which means relying on the following known data obtained
by in situ measurements: (i) ckl(1hkl), (ii) cls(1hls), and
(iii) Ak(hh). However, as the functional relationship between
the groundwater flow q and pressure gradient is nonlinear, as
given by Eqs. (3) and (4), it should be emphasized that even
a small change in one of the estimated hydraulic conductiv-
ity functions will result in a relatively large difference in the
predicted function hl(t). Moreover, the deviation between the
predicted and realized lake water levels, at any point in time,
can be related to the volume of water that is transferred to
the rest of the time domain, so deviations between predicted
and measured lake water levels can only increase over time
(because the mathematical model is based on the principle
of mass conservation). For this reason, the problem of esti-
mating the hydraulic conductivity functions is usually very
complex (especially in large time domains that need to take
different hydrological situations into account ).

3.4 Particle swarm optimization

The unknown functions are estimated by model calibra-
tion (Kuok and Chiu, 2012; Zambrano-Bigiarini and Rojas,
2013), which is performed in an iterative fashion, relying on
available hydrological data. The procedure requires a repre-
sentative time domain (with hydrological extremes) in which
all the relevant data are well documented by in situ measure-
ments. In that case, the mathematical model can be used to
predict the function hl(t) under the same hydrological condi-
tions that led to the change in the lake water level ĥl observed
by in situ measurements and described by the function ĥl(t).
In that case, the assumed functions ckl(1hkl), cls(1hls) ,and
Ak(hh), which can be interpreted as design functions, are val-
idated by comparing the predicted hl(t) and achieved ĥl(t)

change in the lake water level hl. The difference under con-
sideration can be measured by a function G, defined as the
sum of squared differences hl(tn)− ĥl(tn), performed over a
finite number of points tn in the given time domain (where
n ranges from 0 to n1t ). Accordingly, the shaping of the de-
sign functions can be viewed as an optimization problem that
requires the minimization of function G which, in that case,
represents the objective function.

Since the optimization procedure in the proposed method-
ology is conducted numerically (not analytically), the de-
sign functions are represented by a series of function values
equidistantly distributed between the minimal and maximal
values of each design function domain. These discrete val-
ues, used to approximate the design functions, are collected
in a vector x(e) and updated after each evaluation step (e).

In recent years, modern stochastic global optimization
methods have been successfully applied in many difficult
real-world problems. One such optimization method is parti-
cle swarm optimization (PSO), which has been employed in
several hydrological modeling problems. In the PSO method
(Clerc, 2010), the search space of all possible design func-
tions is explored by np agents called particles, each with their
own iteratively updated set of design variables x

(e)
p .

In accordance with the above, particle p in an evaluation
step (e) evaluates its design vector x

(e)
p by using the objective

function as follows:

G(x)=

n1t∑
n=0

(
hl (x, tn)− ĥl (tn)

)2
, (7)

where the function hl(x, tn) represents the model prediction
for design variables
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x(e)p =



ckl
(
1hkl,min

)
...

ckl
(
1hkl,max

)
cls
(
1hls,min

)
...

cls
(
1hls,max

)
Ak
(
hk,min

)
...

Ak
(
hk,max

)



. (8)

After evaluating all vectors x
(e)
p in the current evaluation

step (e), the vectors x
(e+1)
p in the next evaluation step (e+1)

are computed by kinematic analogy, as follows:

x(e+1)
p = x(e)p + v(e+1)

p , (9)

where vp can be interpreted as velocity vector of particle p.
The crucial element of PSO is related to the computation

of the velocity vector v
(e+1)
p , which is inspired by the move-

ments of swarms in a collective search of some biological
need (e.g., food). For this purpose, particle movement is af-
fected by three components, including (i) the inertial com-
ponent, which describes the tendency to preserve the cur-
rent direction and speed of motion, (ii) a component of self-
confidence that describes the tendency to explore the search
space on the basis of personal search experience (particle
memory influence), and (iii) a component of collective in-
fluence that describes the attraction of the very best solution
found among the members of the swarm informing the par-
ticle in question (swarm memory influence). This collective
influence is most often implemented as the influence of the
information of the best solution found by the entire swarm;
i.e., for the purpose of information sharing, the swarm is un-
derstood to be operating as a fully connected graph. There-
fore, the velocity vector v

(e)
p for each particle p can be up-

dated according to the given description that can be mathe-
matically represented by the following:

v(e+1)
p = w · v(e)p︸ ︷︷ ︸

inertia

+ c1 · r1 ◦
(
x
(e)
p,best− x(e)p

)
︸ ︷︷ ︸

particle memory influence

+ c2 · r2 ◦
(
x
(e)
g,best− x(e)p

)
︸ ︷︷ ︸

swarm memory influence

, (10)

where w is the dimensionless inertia parameter, c1 and
c2 are dimensionless parameters used to describe the relative
importance between the influence of particle memory and
swarm memory, respectively, r1 and r2 are random vectors
with components taken from a uniform statistical distribution
between 0 and 1 and introduced to replicate the stochastic
components of particles movement, x

(e)
p,best is the vector of

the design variables in the history of particle p, by which the

objective function G reaches the minimal value (local opti-
mum vector), x

(e)
g,best is the vector of the design variables ex-

tracted from the search history of all particles by which the
objective function reaches the so-far-established minimum
(global optimum vector), and ◦ denotes the Hadamard prod-
uct. After each particle evaluation, a check for updating the
vectors x

(e)
p,best and x

(e)
g,best is performed. From the assumed

initial position x
(0)
p and velocity v

(0)
p for all particles p, the

optimization algorithm given by Eqs. (9) and (10) is repeated
in an iterative fashion until the objective function G, for de-
sign variables x

(e)
p , yields a value lower than some predefined

convergence limit or some other stopping criteria is achieved.
It should be noted that, for the problem under consider-

ation, there are some constraints that can be superposed to
the unknown functions ckl(1hkl), cls(1hls), and Ak(hh) by
reducing the search space and consequently increasing the
efficiency of the optimization algorithm. Namely, as a con-
sequence of the relation between the pressure gradient and
discharge, the values of functions ckl(1hkl) and cls(1hls)

must increase as 1hkl and 1hls increase. In other words,
functions ckl(1hkl) and cls(1hls) are monotonically increas-
ing functions. On the other hand, a similar condition can
be applied to function Ak(hh). Moreover, it is reasonable to
expect that the aquifer in consideration contains caves and
caverns formed by limestone dissolution, underground water
currents, and loads from upper karst deposits. Also, it is usu-
ally reasonable to assume that the volume of the caves and
caverns increases with the aquifer depth, so that the condi-
tion of monotonicity in the growth of Ak(hh) can be used
for each of the n points used to represent the corresponding
function values.

4 Results

The presented methodology was applied for the estimation
of design functions ckl(1hkl), cls(1hls), and Ak(hh) found
in the previously presented mathematical model given by
Eqs. (5) and (6) and developed for modeling the fresh- and
saltwater exchange in Lake Vrana. Since the resulting com-
putational algorithm is based on an iterative procedure by
which the calibration of design functions is performed, it is
appropriate to calibrate them for a relatively long and rep-
resentative time domain within which hydrological extremes
are present. For this purpose, the time domain from the be-
ginning of 2010 to the end of 2015 was chosen to calibrate
the subject design functions. This means that this time do-
main contains not only the previously mentioned case of ex-
tremely low lake water levels but also several cases of flood
waves. These extreme events can be recognized in Fig. 3,
which shows the measured lake water level and sea level. The
variability in the hydrological conditions is necessary to re-
duce the multimodality of the optimization problem; i.e., this
is in order to reduce the search space of the design functions
that must be uniquely defined and ensure the agreement of
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Figure 3. Measured lake water level and sea level in the time domain from early 2010 to late 2015. It should be noted that, in August 2011
and 2012, the sea level was above the lake water level, and so the intrusion of saltwater was significant. In addition, the lake water levels after
these events should be viewed in the context of the weir crest at 0.41 m a.s.l.to identify the overflow during flood waves.

modeled and measured lake water levels for dry and wet peri-
ods. The calibration process requires that, in the selected time
domain, all the relevant hydrological and other data present
in the corresponding mathematical model (terms on the right-
hand side of the differential equations) must be known by in
situ measurements (as is known in the case of Lake Vrana).

From the computational point of view, it should be noted
that such large time domains require stable numerical in-
tegration, and therefore, the system of ordinary differential
equations given by Eqs. (5) and (6) was solved by apply-
ing an implicit numerical scheme. On the other hand, it
should also be noted that there are physical circumstances
that can influence the choice of time step. In the present
case, for example, the size of the time step is conditioned by
the sea level dynamics illustrated in Fig. 3. In other words,
the estimation of the design functions must be carried out
to take into account the changes in groundwater flows that
occur between Lake Vrana and the Adriatic Sea (the same
as between the Prosika channel and Adriatic Sea) within
1 d as a result of changes in sea level. For this purpose,
groundwater flow components are determined on the basis of
hourly changes in sea level, while the lake water level does
not change significantly within 1 d. The resulting numerical
scheme is implemented into a computational algorithm writ-
ten in Python. The initial conditions were given by the model
variables hl(t0) and hk(t0) defined at time t0, i.e., at the be-
ginning of the time domain. The initial condition hl(t0) was
set to 0.81 m a.s.l., which is known by field measurements (as
can be seen in Fig. 3). On the other hand, the variable hk(t0)

was set to 2.2 m a.s.l. and determined from the model cali-
bration so that a relatively rapid raise in the water level hl at
the beginning of the time domain is obtained (as evidenced
by in situ measurements shown in Fig. 3).

As explained above, PSO was used to estimate the consid-
ered design functions. For this purpose, each of the three de-
sign functions is discretized with 20 points so that the search
space is defined with 60 dimensions. The values of the de-
sign functions in this points will change during iterations,
but it is also good to recognize that the design function do-
mains will also vary during iterations. This mean that each
examined case of the design functions will lead to differ-
ent functions, hl(t) and hk(t), and thus to different domains
of independent variables, 1hkl and 1hls. By applying the
abovementioned criteria that the considered design functions
must meet, 22 evaluation steps conducted with 50 particles
were required to reach an acceptable error in the predicted
lake water level when compared to the field measurements
(as shown in Fig. 4). The convergence of the optimization
process is illustrated in Fig. 5, which shows the value of
the objective function at points x

(e)
g,best of the global opti-

mum with respect to the iteration number. For the adopted
parametrization of the calibration functions, the objective
function reached the lowest possible value, and a further re-
duction in its value would require a larger number of param-
eters, i.e., a denser discretization of the calibration functions
(more than 20 point per functions). On the other hand, such a
procedure would significantly affect the number of necessary
iterations to reach a smaller error and the number of required
particles (because the search space would be larger). In this
sense, the parameterization of the calibration functions is de-
termined based on a compromise between the computational
efficiency and an acceptable minimum value of the objective
function.

In order to compare the presented approach with other
approaches, it should be emphasized that the framework of
the model is defined by a system of two ordinary and non-
linear differential equations with variable coefficients that
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Figure 4. The predicted change in lake water level hl(t) (blue line) obtained by the functions illustrated in Figs. 6–8 and the change in lake
water level ĥ(t) determined by in situ measurements (green line). In the selected time domain, the drought period in August 2012 should be
noted, in addition to the next three extremes that arose as a result of flood waves.

Figure 5. Global optimum points obtained for the design variables x
(e)
g,best by which the objective function reaches the so-far-established

minimum.

also define the calibration functions. In these circumstances,
automated methods such as genetic algorithms are usually
used (Lu et al., 2018; Nematolahi et al., 2018). On the other
hand, if the trial-and-error method shows that the results are
very sensitive to the calibration functions (model parame-
ters), then the application of genetic algorithms is probably
not the most appropriate. This means that the sensitivity of
the model results to the calibration functions indicates a large
number of local minima in the objective function by which
the multimodality of the problem can be recognized. In such
circumstances, it is not only necessary to carry out a global
search of the domain of the objective function, as carried out
by the method of genetic algorithms, but it is also necessary
to examine local minima in order to enable a more detailed
search of the individual parts of the domain by carrying out
local searches. Moreover, the search for local minima must
be adaptive so that the solution in the current iteration can

be updated by the new local solution that results in a more
favorable variant of the calibration parameters. In this way,
the possibility of searching for a larger number of local min-
ima is realized, which is necessary for such multimodal prob-
lems. Considering all of the points mentioned, and by not-
ing that the model in question showed the characteristics of
multimodal problems, the calibration of the model was per-
formed using the PSO method, which simultaneously per-
forms a global and local search of the domain of the objective
function (Özcan and Yilmaz, 2007; Kuok and Chiu, 2012;
Zambrano-Bigiarini and Rojas, 2013). Considering the expe-
rience gained from the performed analysis, the application of
the PSO method can be recommended for the calibration of
semi-distributed lumped karst models based on a system of
nonlinear ODEs. However, the calibration procedure should
be carried out by taking into account the uncertainty in the
input data of the model (as shown below).
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4.1 Uncertainty in measurements and calibration
functions

Since the model refers to a relatively large karst area and re-
lies on a large database obtained by field measurements over
the time span of 6 years, the model calibration procedure
should be conducted by considering the uncertainty in the
input data. For this purpose, it should be noted that the flow
component qkl,sf, which is related to the surface water flow
into Lake Vrana, has a relatively low degree of uncertainty
because it was obtained by a continuous monitoring of the
surface water level in all tributaries to the lake (this requires
relating the water level to the flow rate under the assump-
tion of stationary flow conditions). Similarly, the flow com-
ponent ql,ir, related to water extraction from Lake Vrana for
the irrigation of agricultural land, is also quite a reliable data
source since it refers to the volume of water that is charged.
On the other hand, the flow component ql,ev, related to evap-
oration from the water surface of Lake Vrana, contains a cer-
tain degree of uncertainty, but this is again much smaller than
the main source of uncertainty, which is related to the flow
components ql,pr and qk,pr (i.e., precipitations on the water
surface of the lake and the surrounding karst aquifer). In or-
der to take these uncertainties into account, the error in the
flow components ql,pr and qk,pr were modeled stochastically
by a Gaussian distribution N (µ,σ ) (in which µ is the mean
value and σ is the related standard deviation). Accordantly,
for each day i in the considered time domain, the input data
of precipitation were obtained by adding the error value ran-
domly sampled from the statistical distribution N (pi,σ ) to
a known measured data pi of precipitation (with a standard
deviation σ of 5 mm d−1). Therefore, the calibration of the
model was carried out for a larger number of cases of precip-
itation (flow components ql,pr and qk,pr), which included the
uncertainty in the precipitation data and enabled the exami-
nation of its influence on the unknown calibration functions
(i.e., describing the range of potential hydraulic conductivity
functions at some probability level). In other words, the cal-
ibration of the model was conducted in an iterative fashion
by the repetitive application of the previously described pro-
cedure (without changing the initial parameters of the PSO
method). For each generated case of precipitation, the PSO
method was applied to estimate the required values of the
calibration functions. In order to evaluate the estimated func-
tions equally, for all different cases of precipitation, the ap-
plication of the PSO method was carried out until the global
optimum did not fall below the predefined tolerance. In this
way, the calibration error in all cases was of the same order
of magnitude.

In accordance with the above description, the calibration
of the unknown functions was carried out for 200 cases of
precipitation. In this way, for each discrete coordinate in the
domain of the unknown functions, a set of 200 possible func-
tion values was estimated. In other words, the values of the
calibration functions are represented with a statistical distri-

bution for each discrete domain coordinate. In order to graph-
ically display the schedule of obtained values, the so-called
box plot diagram was used, showing the five-number sum-
mary of the obtained data set (for each point in the func-
tion domain), including the minimum, lower quartile, me-
dian (illustrated by an orange line), upper quartile, and max-
imum. The results of the described calibration process are
shown in Figs. 6–8. For the calibration function ckl(1hkl), it
should be noted that, in the area of the domain from 0 to
2.5 m a.s.l., there is very little scatter around the obtained
mean value (blue dots connected by a blue line), and after
that, a slightly larger scatter can be recognized in the central
part of the domain (Fig. 6), but again the trend of the func-
tion is well articulated (with a mean value near the middle of
the interquartile range). In the case of the calibration func-
tion cls(1hls), the deviations of the obtained values around
the mean values of the hydraulic conductivity (blue dots) are
almost constant (Fig. 7). In contrast to the previous hydraulic
conductivity function, in this case the model predicts the ex-
change of water in both directions, i.e., from the lake to the
sea, and vice versa. Scattering around the mean value of the
function Ak(hk) is not uniform within the domain, and the
maximum uncertainty is contained in the middle of the do-
main, i.e., in the range from 3.0 to 5.5 m a.s.l. (Fig. 8).

In order to reduce the uncertainty in the calibration func-
tions, additional conditions can be included within the pre-
sented calibration procedure. In other words, the allowed
ranges of the values of the calibration functions can be speci-
fied within the optimization procedure for a particular part of
the domain. For this purpose, it should be noted that the most
sensitive areas of the domain of calibration functions can be
determined by uncertainty analysis (as in the case of Lake
Vrana) and thus define the scope of additional field measure-
ments that will provide the necessary data from which addi-
tional conditions for calibration functions can be prescribed
(which will consequently reduce the uncertainty). In order
to carry out the analysis of the dynamics of the exchange of
fresh- and saltwater in Lake Vrana (under different protec-
tion conditions), the calibration functions shown by the blue
line in Figs. 6–8 were used (defined by joining the mean val-
ues of the obtained statistical distributions).

4.2 Analysis of the existing protection against seawater
intrusion

The calibrated mathematical model was used to conduct a
more detailed analysis of fresh- and saltwater exchange in
Lake Vrana during the considered time domain. Thus, the
total volume of fresh- or saltwater that fills or empties Lake
Vrana in a unit of time can be decomposed into its constituent
parts given by the corresponding terms in Eqs. (5) and (6).
Accordingly, Fig. 9 illustrates the origin of water volumes
entering or exiting Lake Vrana, where positive volumes de-
note inflow quantities and negative volumes outflow quanti-
ties. It is important to recognize the volumes of water that
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Figure 6. Statistical distribution of estimated values of the hydraulic conductivity function ckl(1hkl) in Eqs. (6) and (7) required for quan-
tifying the groundwater flow between the karst aquifer and Lake Vrana, as obtained by model calibration over a 6-year time domain (from
early 2010 to late 2015), with the PSO method and adopting constraints that increase the function values by increasing the absolute values
of the pressure head difference 1hkl. It should be noted that the iterative evaluation procedure of the design function has converged into
a solution that does not predict the exchange of water from the direction of Lake Vrana to the surrounding karst aquifer (which was to be
expected and is recognizable in the function domain).

Figure 7. Statistical distribution of the estimated values of the hydraulic conductivity function cls(1hls) in Eq. (7), which is required to
quantify the groundwater flow between Lake Vrana and the Adriatic Sea, as obtained by model calibration over a 6-year time domain (from
early 2010 to late 2015) by PSO method and adopting constraints that increase the function values by increasing the absolute values of the
pressure head difference 1hls.

(i) pass through Lake Vrana bed (red areas), (ii) pass through
the Prosika channel bed (black areas), and (iii) overflow the
weir crest at 0.41 m a.s.l. at the end of the Prosika channel
(orange areas). Therefore, as the sea level in August 2011
and 2012 was above the lake water level (hs > hl), the model
predicts the intrusion of saltwater through Lake Vrana bed
and also a small contribution from the Prosika channel bed
(red and black areas on the positive side). Moreover, the vol-
ume analysis can be used to estimate the amount of saltwater
in Lake Vrana.

Under the assumption of only freshwater being present in
Lake Vrana at the beginning of simulated time period, and
the expectation that it is difficult for the contained saltwa-
ter to mix with freshwater, it is firstly squeezed out through

groundwater flow if the required pressure gradient is reached
(as it is denser and thus close to the lake bed), and then the
volume analysis can be used to estimate the temporal change
in the ratio of fresh- and saltwater in Lake Vrana, thereby
giving useful information on the water quality. Accordingly,
Fig. 10 illustrates the change in the ratio between fresh- and
saltwater in Lake Vrana over the considered time domain.
Moreover, the amount of saltwater that penetrated during the
low lake water level can be monitored, in addition to the
gradual extrusion of saltwater as a consequence of replen-
ishment of freshwater in the coming period of floods.
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Figure 8. Statistical distribution of estimated values of the function Ak(hk) in Eq. (6), as obtained by model calibration with the PSO method
over a 6-year time domain (from early 2010 to late 2015), and adopting the constraint condition of a progressive reduction in the function
values (i.e., requiring a negative derivation at each calibration point).

Figure 9. The decomposition of water volumes related to the inflow and outflow from Lake Vrana in the considered time domain and for
the existing protection against seawater intrusion (positive values denotes volumes entering the lake and negative volumes the opposite). The
intrusion of saltwater can be recognized through the Lake Vrana bed and the Prosika channel bed.

4.3 Analysis of the tested protection against seawater
intrusion

The effectiveness of different technical solutions for protec-
tion against excessive seawater intrusion can now be tested
by changing the appropriate model parameters with the in-
tention of simulating different flow conditions. In order to
illustrate the application of the model, the quantity and qual-
ity of the water in Lake Vrana (related to the lake water level

and the ratio between fresh- and saltwater) was modeled by
adopting a tested protection measure against seawater intru-
sion involving (i) the construction of a sluice gate at the end
of the Prosika channel (instead of the current weir of fixed
height) and (ii) lining the canal to prevent seawater intrusion
through the Prosika channel bed (denoted by black areas in
Fig. 9). Thus, a sluice gate is necessary in order to preserve
the possibility of evacuating a large amount of water during
the flooding period. At the same time, the sluice gate can be
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Figure 10. The temporal change in a ratio between fresh- and saltwater in Lake Vrana in the considered time domain and for the existing
protection from seawater intrusion. It should be noted that the intrusion of saltwater begins in September 2010 when, in a short time period,
the lake water level falls below sea level (as shown in Fig. 3).

used to prevent water overflow (denoted by orange areas in
Fig. 9), thereby achieving the retention of freshwater in the
lake.

To illustrate the benefit of the introduced sluice gate, it
was necessary to define an algorithm for its movement dur-
ing dry and wet periods. For this purpose, the gate move-
ment was defined as a function of the current lake water
level hl(t). In order to contribute to the retention of freshwa-
ter during the dry period, the gate crest in the lowered posi-
tion was set at 1.05 m a.s.l., preventing the overflow of fresh-
water and saltwater intrusion by surface flow in the Prosika
channel (term qcs,sw). During flood periods, the gate is raised
so that the overflowing crest level is at 0.15 m a.s.l., i.e., at the
Prosika channel bottom (thus achieving maximum through-
put).

For the described gate-control algorithm, Fig. 11 shows
the achieved lake water level variation in the considered time
domain and under the same hydrological conditions as used
previously. By comparing the obtained time change in the
lake water level (red line) with the one measured for the exist-
ing state of protection against seawater intrusion (blue line),
it should be noted that the lake water level increases negligi-
bly during the dry period in August 2012. However, the ef-
fectiveness of the considered protection can be recognized by
performing the decomposition of water volumes entering or
leaving Lake Vrana per unit of time (as in the previous case).
Accordingly, Fig. 12 shows the decomposition of the water
volumes obtained for the tested protection case. The lining of
the channel bed excluded the component of water exchange
that takes place through the porous Prosika channel bed (de-
noted by black areas in Fig. 9), as obtained for the existing
protection case. Notwithstanding, it should be noted that the
presence of a gate increased the flow through the Lake Vrana
bed (denoted by red regions in Fig. 12). This result should

not be surprising because the gate activity raises the lake wa-
ter level most of the time (as shown in Fig. 11) and conse-
quently raises the pressure gradient and in turn the compo-
nent of sinking flow described by the term qls,gw. The benefit
of the tested protection measure case can be recognized if
the temporal change in the ratio of fresh- and saltwater is
observed (as done previously). Although the flow of water
from the lake is higher (resulting from rising water levels in
the lake), the total amount of saltwater in the lake decreases
as a consequence of lining the Prosika channel bed (prevent-
ing one component of seawater intrusion) and also retaining
a larger amount of freshwater in the lake. The resulting ben-
efit can be recognized by comparing Figs. 10 and 13. Finally,
it should also be noted that the gate presence with the given
maneuvering algorithm did not disrupt the flood protection,
as the maximal lake water level did not increase.

5 Conclusions

The application of a semi-distributed lumped karst model re-
quires the estimation of hydraulic conductivity functions by
which the relationship between the difference in the pressure
head along karst conduits (related to the pressure gradient)
and the achieved groundwater flow is described. An iterative
method, based on the application of PSO method, has been
proposed for the estimation of these functions. Accordingly,
the inverse modeling task is considered to be an optimization
problem which is carried out by minimizing the objective
function through which the difference between the predicted
hydrological quantity and the measured one (e.g., water level
under the same hydrological conditions) is quantified. For
this purpose, it was necessary to provide all relevant hydro-
logical and other data in a representative time domain that
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Figure 11. Comparison of the measured lake water level (blue line) for the existing protection from seawater intrusion and the lake water
level obtained for the tested protection from seawater intrusion (red line), which includes (i) the sluice gate at the end of the Prosika channel
and (ii) lining the Prosika channel bed.

Figure 12. The decomposition of the water volumes related to inflow and outflow from Lake Vrana in the considered time domain and for a
hypothetical protection variant involving lining the Prosika channel bed and raising the level of the downstream overflow.

includes hydrological extremes. For illustrative purposes, the
proposed procedure was applied to model the exchange of
fresh- and saltwater in Lake Vrana in Croatia. To estimate
the hydraulic conductivity functions related to groundwater
flow between Lake Vrana and the surrounding karst aquifer
and the Adriatic Sea, a time domain that spans over 6 years
was considered. Apart from the unknown hydraulic conduc-
tivity functions, the functions that relate groundwater level

in a karst aquifer to the corresponding horizontal cross-area
of karst conduits were also estimated by the procedure. To
reduce the number of all possible solutions, additional con-
straint conditions were applied to the unknown functions.
Within a reasonable number of evaluation steps, the proce-
dure converged to a solution by which the computed time
change in the lake water level was approximately equal to
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Figure 13. The temporal change in the ratio between fresh- and saltwater in Lake Vrana in the considered time domain and for a tested
protection measure involving a sluice gate at the end of the Prosika channel and lining the Prosika channel bed.

the measured lake water level over the entire time domain
(including dry and wet periods).

The calibrated model was used to analyze the current pro-
tection of Lake Vrana from saltwater intrusion. For this pur-
pose, a decomposition of the total water volume inside Lake
Vrana was conducted, based on the origin of the water and
the direction of the flow (inflow or outflow). By assuming no
saltwater at the beginning of the time domain, the conducted
analysis was used to monitor the volume ratio of fresh- and
saltwater in the lake. To increase the quality and also the
quantity of water in Lake Vrana, an alternative measure to
protect against saltwater intrusion was tested. The consid-
ered protection case included (i) lining the Prosika channel
bed and (ii) constructing a sluice gate at the end of Prosika
channel. For the same hydrological conditions and time do-
main, the tested protection solution did not prevent the lake
water level from falling to the lowest point (as compared to
the existing protection system). However, the decomposition
of the water volume that enters and exits the lake revealed a
smaller amount of saltwater compared to the existing protec-
tion system.
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Rubinić, J., and Katalinić, A.: Water regime of Vrana Lake in Dal-
matia (Croatia): changes, risks and problems, Hydrolog. Sci. J.,
59, 1908–1924, https://doi.org/10.1080/02626667.2014.946417,
2014.

Schmidt, S., Geyer, T., Guttman, J., Marei, A., Ries, F., and Sauter,
M.: Characterisation and modelling of conduit restricted karst
aquifers – Example of the Auja spring, Jordan Valley, J. Hydrol.,
511, 750–763, https://doi.org/10.1016/j.jhydrol.2014.02.019,
2014.

Shoemaker, W., Cunningham, K., Kuniansky, E., and Dixon, J.: Ef-
fects of turbulence on hydraulic heads and parameter sensitivities
in preferential groundwater flow layers, Water Resour. Res., 44,
W03501, https://doi.org/10.1029/2007WR006601, 2008.

Thrailkill, J.: Pipe flow models of a Kentucky limestone aquifer,
Groundwater, 12, 202–205, https://doi.org/10.1111/J.1745-
6584.1974.TB03023.X, 1974.

Wheater, H. S., Bishop, K. H., and Beck, M. B.: The iden-
tification of conceptual hydrological models for sur-
face water acidification, Hydrol. Process., 1, 89–109,
https://doi.org/10.1002/hyp.3360010109, 1986.

Hydrol. Earth Syst. Sci., 27, 1343–1359, 2023 https://doi.org/10.5194/hess-27-1343-2023

https://doi.org/10.1080/02626669309492639
https://doi.org/10.1016/j.jhydrol.2012.06.043
https://doi.org/10.1023/B:NARR.0000007808.11860.7e
https://doi.org/10.1029/2000WR900368
https://doi.org/10.5194/hess-24-4275-2020
https://doi.org/10.1007/s10040-011-0737-y
https://doi.org/10.1016/j.jhydrol.2007.07.014
https://doi.org/10.1007/978-4-431-68442-8_17
https://doi.org/10.1007/s10040-020-02241-8
https://doi.org/10.1007/s10040-020-02241-8
https://doi.org/10.1007/s11269-013-0300-9
https://doi.org/10.1002/hyp.6625
https://doi.org/10.14569/IJACSA.2012.030917
https://doi.org/10.1016/j.jhydrol.2009.11.029
https://doi.org/10.3390/w10010084
https://doi.org/10.1007/s12665-010-0751-8
https://doi.org/10.1016/j.ejrh.2021.100784
https://doi.org/10.1007/s12517-018-3846-2
https://doi.org/10.1007/978-3-540-71618-1_41
https://doi.org/10.1007/s10040-019-02002-2
https://doi.org/10.1007/s10040-019-02002-2
https://doi.org/10.1016/j.jhydrol.2006.06.003
https://www.bib.irb.hr/748627
https://doi.org/10.1080/02626667.2014.946417
https://doi.org/10.1016/j.jhydrol.2014.02.019
https://doi.org/10.1029/2007WR006601
https://doi.org/10.1111/J.1745-6584.1974.TB03023.X
https://doi.org/10.1111/J.1745-6584.1974.TB03023.X
https://doi.org/10.1002/hyp.3360010109


V. Travaš et al.: Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization 1359

Wunsch, A., Liesch, T., Cinkus, G., Ravbar, N., Chen, Z., Mazz-
illi, N., Jourde, H., and Goldscheider, N.: Karst spring dis-
charge modeling based on deep learning using spatially dis-
tributed input data, Hydrol. Earth Syst. Sci., 26, 2405–2430,
https://doi.org/10.5194/hess-26-2405-2022, 2022.

Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M., and Jakeman,
A. J.: Performance of conceptual rainfall-runoff models in low-
yielding ephemeral catchments, Water Resour. Res., 33, 153–
166, https://doi.org/10.1029/96WR02840, 1997.

Zambrano-Bigiarini, M. and Rojas, R.: A model-
independent particle swarm optimization software for
model calibration, Environ. Model. Softw., 43, 5–25,
https://doi.org/10.1016/j.envsoft.2013.01.004, 2013.

Zambrano-Bigiarini, M. and Rojas, R.: hydroPSO: Particle swarm
optimisation with focus on environmental models, R package
version 0.5-1, https://CRAN.R-project.org/package=hydroPSO,
last access: 29 April 2020.

https://doi.org/10.5194/hess-27-1343-2023 Hydrol. Earth Syst. Sci., 27, 1343–1359, 2023

https://doi.org/10.5194/hess-26-2405-2022
https://doi.org/10.1029/96WR02840
https://doi.org/10.1016/j.envsoft.2013.01.004
https://CRAN.R-project.org/package=hydroPSO

	Abstract
	Introduction
	Study area
	Research method
	Hydraulic conductivity function
	Conceptual model
	Mathematical model
	Particle swarm optimization

	Results
	Uncertainty in measurements and calibration functions
	Analysis of the existing protection against seawater intrusion
	Analysis of the tested protection against seawater intrusion

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

