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 Rocking stability of a rigid prismatic block standing on a rigid base 
subject to a simple harmonic acceleration function is still an 
important dynamics problem, in which energy loss is often not 
treated accurately enough. The energy loss at impacts during 
rocking is here examined. The stability for various slendernesses 
and sizes of a rocking block is assessed numerically, where an 
improved coefficient capable of estimating the size effect is 
considered. A number of relevant cases are validated 
experimentally, with a specially designed set of well-controlled 
and documented rocking benchmark tests on a shaking table 
system. 
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1 Introduction  
  

Rocking is an important mode of motion in many historic structures [1], but also in various structural 
elements  in modern industrial complexes (ex. masonry structures after the failure of the binder or blocks in 
AGR nuclear power plants) [2] subject to dynamic excitation such as earthquake. There is also a rising interest 
in utilizing rocking as a means for seismic isolation of tall slender buildings [1]. For these reasons, it is 
important to determine whether a body subject to an excitation will rock (and finally settle due to energy 
dissipation) or will overturn.  

In-plane rocking of rigid prismatic blocks was first addressed by Housner in 1963 [3]. He derived the 
nonlinear equation of motion of the block standing on a rigid base with a single degree of freedom - the angle 
of rotation. He assumed that for slender blocks a linearized equation of motion is appropriate and derived the 
analytical solutions for what he called the 'period and frequency of rocking motion', which turned out to be 
dependent on the amplitude of rocking. Following Housner's work, the analytical condition for initiation of 
rocking and the minimum ground acceleration of a specific acceleration function necessary to overturn a block 
have been further derived from the linearized equation of motion [3]–[7], while the fully nonlinear equation of 
motion using the state-space procedure and built-in ODE solvers has been addressed in [5], [6], [8]–[11]. In 
an attempt to characterise rocking motion more completely, transient and steady-state dynamic response of a 
single rigid block due to earthquakes [7], random-noise excitations [12] and pulse-type excitations [9] have 
been investigated.  

However, rocking of a single block due to a simple harmonic function, such as a single sine or cosine wave, 
is still not characterised in the sense that the real energy-loss during rocking is taken into account via the 
appropriate coefficient of restitution. Many researchers [13]–[21] concluded that the experimentally obtained 
results for dynamic response and overturning of blocks due to base acceleration cannot be described using the 
classical Housner's approach, since the energy loss during impacts he described does not model the real 
behaviour well enough.  For this reason, here we analyse the stability of a block during simple harmonic ground 
acceleration function numerically and validate the results experimentally. The improved estimate of the 
restitution coefficient, introduced independently by Kalliontzis et al. [22] and by Chatzis et al. [23], is 
employed. The improved estimate, which is derived from the assumption that the resultant impulse at the time 
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of impact acts at some other point than the corner of the block, proves to be a better approximation of the real 
restitution [24] than the widely used Housner's restitution [3].   

The improved estimate of the restitution coefficient has previously been addressed in [22] for block excited 
with functions based on real earthquake motions, while the effect of the uncertainty of the position of the 
impact impulse to the rocking stability due to sine- and cosine-wave excitation is addressed in [23]. The 
rocking block problem is still an interesting case, since it presents an important mode of motion of multi-block 
structures (such as masonry and dry-stone structures) and coupled structures (such as quasi-rigid element near 
a deformable structure). The energy loss mechanism is still often described only by Housner’s restitution [25]–
[27] (among others), so this work aims to raise the importance of taking the improved coefficient of restitution 
into account, since it results in safer overturning conditions [28], [29]. Thus, the objective here is to numerically 
and experimentally derive safer conditions under which a block overturns when subjected to a single sine-
wave or cosine-wave acceleration, than those available in the literature [1], considering the improved estimate 
of the coefficient of restitution obtained experimentally [24].  

 
2 Problem description 

  

2.1 Equations of motion and numerical algorithm 
  

Rocking of a single rigid prismatic block due to an arbitrary horizontal base acceleration function is 
described by the following equations of motion [3]  

 
 𝐼஺𝜃̈ + 𝑚𝑔𝑅 sin(𝛼 − 𝜃) + 𝑚𝑢̈𝑅 cos(𝛼 − 𝜃) = 0    if    𝜃 > 0 

 
(1) 

 𝐼஺𝜃̈ − 𝑚𝑔𝑅 sin(𝛼 + 𝜃) + 𝑚𝑢̈𝑅 cos(𝛼 + 𝜃) = 0    if    𝜃 < 0, (2) 
  
where 𝜃 is the angle of rotation, 𝑚 is the mass of the block, 𝐼஺ = 4/3𝑚𝑅ଶ is its moment of inertia around 
either of the corners,  𝛼 = tanିଵ ℎ/𝑏 is its angle of slenderness, ℎ is the height and 𝑏 is the width of the block,   
𝑅 = 1/2√𝑏ଶ + ℎଶ, 𝑔 is the gravitational constant, 𝑢̈ is the ground acceleration function, while the 
superimposed dots indicate time differentiation. Figure 2 shows free-body and mass-acceleration diagrams for 
𝜃 > 0. 

 

 

Figure 1. Free-body and mass-acceleration diagrams during rotation around contact point A (𝐹஺௫  and 𝐹஺௬ 
are the contact reactions). 

 
Equation (1) can be linearised if we limit our research to only slender blocks with small rotations. However, 

in order to describe rocking of blocks with arbitrary slenderness which can undergo large rotations, it is 
necessary to use the fully nonlinear equation of motion. In this work, rocking and overturning due to two 
simple harmonic acceleration excitations - a single sine wave and a single cosine wave (see Figure 2) - is 
examined. The acceleration function is described with its amplitude 𝑎଴ and angular frequency 𝜔 = 2𝜋/𝑡௕, 
where 𝑡௕ is the period of excitation. 
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Figure 2. Ground acceleration functions examined. 
 

2.2 Numerical integration 
  

Equations (1) and (2) with acceleration function 𝑢̈ as shown in Figure 2 are now solved numerically using 
the well-known Newmark's trapezoidal rule [30]:  

  
 𝜃̇௡ାଵ =

ଶ

∆௧
(𝜃௡ାଵ − 𝜃௡) − 𝜃̇௡ , 

 

(3) 

 𝜃̈௡ାଵ =
ସ

∆௧మ
(𝜃௡ାଵ − 𝜃௡) −

ସ

∆௧
𝜃̇௡ − 𝜃̈௡ , (4) 

 
where ∆𝑡 is the time-step length, leading to: 
 
 ସ

∆௧మ
(𝜃௡ାଵ − 𝜃௡) −

ସ

∆௧
𝜃̇௡ − 𝜃̈௡ + 𝑝ଶ sin(𝛼 − 𝜃௡ାଵ) +

௣మ

௚
𝑢̈௡ାଵ cos(𝛼 − 𝜃௡ାଵ) = 0   if            

𝜃௡, 𝜃௡ାଵ > 0 
 

(5) 

 ସ

∆௧మ
(𝜃௡ାଵ − 𝜃௡) −

ସ

∆௧
𝜃̇௡ − 𝜃̈௡ − 𝑝ଶ sin(𝛼 + 𝜃௡ାଵ) +

௣మ

௚
𝑢̈௡ାଵ cos(𝛼 + 𝜃௡ାଵ) = 0   if   

𝜃௡, 𝜃௡ାଵ < 0, 
(6) 

 

where 𝑝 = ට3𝑔
4𝑅ൗ  is the so-called frequency parameter. 

 
At each time-step, the nonlinear equation is solved iteratively using the Newton-Raphson iterative 

procedure. An impact detection procedure described in [24] is built into the numerical algorithm used here. 
When at a time 𝑡௡ାଵ either 𝜃௡ > 0 and 𝜃௡ାଵ < 0 or 𝜃௡ < 0 and 𝜃௡ାଵ > 0  occurs, the dynamic equilibrium 
for this time step is repeated for an unknown time-step length ∆𝑡′ rather than 𝜃௡ାଵ, under the conditions that 
𝜃௡ାଵ ≔ 0. 
 
The pre-impact angular velocity 𝜃̇ି and angular acceleration 𝜃̈ି are then calculated as 
 
 

𝜃̇ି =
2

∆𝑡ᇱ
(0 − 𝜃௡) − 𝜃̇௡  

 
(7) 

 𝜃̈ି =
ସ

∆௧ᇲమ
(0 − 𝜃௡) −

ସ

∆௧ᇲ 𝜃̇௡ − 𝜃̈௡ , 

 

(8) 
 

the original time-step length ∆𝑡 is restored and the time-stepping procedure switches to the next step and to 
the other equation of motion. At this point, however, the angular velocity at the beginning of the first post-
impact time step has to be reduced considering appropriate restitution model. 
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2.3 Restitution model 
 

Two restitution descriptions are compared in this study, where the restitution coefficient is defined as the 
ratio between the post-impact and pre-impact angular velocities. The classical Housner's model [3], which 
assumes that the contact impulse during impact takes place at the very edge of the block, defines the restitution 
coefficient as 
 
 

𝜂ு = 1 −
3

2
sinଶ 𝛼  (9) 

 
The modified restitution description, independently proposed by Kalliontzis's at al. [22] and Chatzis et al.  [23], 
considers the fact that the contact impulse may act at any point between the edges of the block. The resulting 
restitution coefficient is defined as 
 
 

𝜂ெ =
4 − 3 sinଶ 𝛼 (1 + 𝑘ଶ)

4 − 3 sinଶ 𝛼 (1 − 𝑘ଶ)
 (10) 

 

The above equation follows the work by Kalliontzis et al. [22], where 𝑘 =
௕ത

௕ ଶ⁄
, and 𝑏ത is the distance of the 

point at which the contact impulse acts from the midpoint of the bottom side of the block, as shown in Figure 
3. 
                                                                               

 
 

Figure 3. Impact position for calculating 𝑘 needed in equation (10). 
 
The two restitution formulas become increasingly similar with the increase in block's slenderness, but in 
general 𝜂ு  significantly overestimates block's stability [24]. On the other hand, 𝜂ெ involves an additional 
parameter, for which a method to determine it has to be devised. 
 
2.4 Rocking stability 
 

Stability of the block is characterised based on whether the block overturns or rocks in a stable fashion 
(and finally settles) during the excitation or after it drops to zero. Rocking stability is assessed using the 
described numerical procedure based on the nonlinear equation of motion by running the algorithm multiple 
times for different excitation frequencies and amplitudes and documenting the outcome in the frequency-
amplitude space. In this way the areas with the excitation conditions under which overturning occurs and those 
under which rocking in stable fashion occurs are obtained.  

The boundary between these areas in the case of sine-wave acceleration is presented in Figures 4 and 5 for 
two slenderness ratios using both restitution formulas (with 𝑘 = 0.75 in case of 𝜂ெ, taken to outline the 
realistic variations of this coefficient, as shown in [22]). The values b have not been declared because these 
plots with normalized values on both horizontal and vertical axes should be valid for any value b if the size 
effect is not taken into consideration. The results in Figures 4 and 5 and in the rest of the paper are presented 
in terms of the normalised angular frequency 

ఠ

௣
 on the horizontal axis and the normalised acceleration 

amplitude 
௔బ

୥ ୲ୟ୬ ఈ
 on the vertical axis. These figures stress the importance of the improved restitution estimate 

𝜂ெ, as it is clear that 𝜂ு may seriously overestimate a block's stability against overturning. 
 



N. Čeh, G. Jelenić: Numerical and experimental investigation of rocking… 5 
________________________________________________________________________________________________________________________ 

 

 
 

Figure 4. Stability graph due to a single sine wave for blocks with 
௛

௕
= 2.25. 

 

 
 

Figure 5. Stability graph due to a single sine wave for blocks with 
௛

௕
= 4.5. 

 
3 Rocking stability using an improved restitution estimate 
 

Here we try to characterise the rocking more precisely using an estimate for 𝑘 in equation (10) obtained 
from the series of free rocking experiments reported in [24]. 

  
3.1 Geometry 

  

Stability of the blocks of two different slenderness ratios and two different sizes are examined here so that both 
the slenderness effect and the size effect may be investigated. The properties and the corresponding Housner's  
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restitution coefficients of the four blocks examined in this study are shown in Table 1, where the thickness of 
the blocks is equal to their width 𝑏. The actual denotation used for the blocks follows that introduced in [24] 

Table 1. Geometry, 𝜂ு , and 𝜂ெ for the analysed blocks. 
 

  

Block 𝑚 [𝑔] 𝑏 [𝑚𝑚] ℎ [𝑚𝑚] 
௛

௕
  𝛼 [𝑟𝑎𝑑] 𝑅 [𝑚𝑚] 𝑝 𝜂ு 𝜂ெ 

B3M 544.4 45 101.25 2.25 0.4182 55.4 11.524 0.7526 0.8106 
B6M 1089.6 45 202.5 4.5 0.2187 103.7 8.423 0.9294 0.9472 
B3L 1284.3 60 135 2.25 0.4182 73.9 9.978 0.7526 0.8598 
B6L 2569.2 60 270 4.5 0.2187 138.3 7.294 0.9294 0.9617 

  
For the blocks in Table 1 the unknown parameter 𝑘 necessary to calculate 𝜂ெ in (10) is obtained in [24] as 

k = 0.8608 for a set of nine medium-sized blocks (b = 0.045 m) with slenderness ranging from 
௛

௕
= 1.5 to 

௛

௕
= 9.75 and k = 0.7306 for the corresponding set of large blocks (b = 0.06 m), obtained as average values. 

The corresponding 𝜂ெ  are shown in Table 1.  
 
3.2 Single sine-wave acceleration 

  

Rocking stability and overturning conditions for a rigid block due to a single sine-wave acceleration 
excitation highly depend on the restitution coefficient. The overturning condition obtained from the numerical 
procedure described earlier using ∆t = 0.001  s and the Newton-Raphson convergence norm 1 ⋅ 10ିଽ for the 
blocks and the corresponding restitution coefficients given in Table 1 are shown in Figures 6 and 7 for the 

blocks with slenderness ratio 
௛

௕
 of 2.25 and 4.5, respectively. 

 

 

Figure 6. Stability graph for a single sine wave acceleration excitation for blocks with 
௛

௕
= 2.25: B3M and 

B3L. 
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Figure 7. Stability graph for a single sine wave acceleration excitation for blocks with 
௛

௕
= 4.5: B6M and 

B6L. 

3.3 Single cosine-wave acceleration 
  

The overturning conditions for a rigid block due to a single cosine-wave excitation acceleration obtained 
from the described numerical procedure vary only slightly with variation in block's size. Also, the overturning 
conditions are not strongly dependent of the restitution coefficient, which can be seen in Figures 8 and 9 for 

the blocks with slenderness ratio 
௛

௕
 of 2.25 and 4.5, respectively.  

 

 

Figure 8. Stability graph for a single cosine wave acceleration excitation for blocks with 
௛

௕
= 2.25: B3M and 

B3L. 
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Figure 9. Stability graph for a single cosine wave acceleration excitation for blocks with 
௛

௕
= 4.5: B6M and 

B6L.                                                                             

4 Experimental set-up   
  

4.1 Contact conditions in the model 
 

In order to avoid slipping and bouncing and to assure only rocking motion, a specially designed system of 
tapes described in [24] is also used here (see Figure 10).  

 

 
 

Figure 10. System of tapes designed to avoid sliding and jumping of the block. 
 

4.2 Excitation and shaking table capacities 
 

The excitation is experimentally performed by means of a biaxial shaking table Quanser ST-III run by a 
LabWiev-based software, which controls the position of the table. The conducted experiments are uniaxial.  
The desired acceleration excitation function, which is a part of the equation of motion in the simulations, 
should be integrated twice to get the position excitation function and as such given to the shaking table for the 
experimental tests. Due to the inertia of the table itself, the initial velocity of the system can only be equal to 
zero and rise gradually after that. For this reason, we can experimentally simulate either a cosine-wave 
acceleration excitation  𝑢̈( t) =  a଴ cos(ω t)  leading to 

 
 𝑢̇(𝑡) =

௔బ

ఠ
sin(𝜔𝑡), 

𝑢(𝑡) =
௔బ

ఠమ [1 − cos(𝜔𝑡)], 
(11) 
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or a sine-wave acceleration excitation 𝑢̈( t) =  a଴ sin(ω t)   leading to 
 

𝑢̇(𝑡) =
௔బ

ఠ
[1 − cos(𝜔𝑡)], 

𝑢(𝑡) =
௔బ

ఠమ [1 −
ଵ

ఠ
sin(𝜔𝑡)]. 

(12) 

These functions are shown in Figure 11. 
 

 
Figure 11. Sine- (left) and cosine-wave (right) acceleration excitation with the corresponding velocity and 

position functions. 

The shaking table system (Quanser ST-III) has the total gait of 10.8 cm in both directions, it can reach a 
velocity of 2.58 m/s and an acceleration of 3.21𝑔 with the load-mass roughly corresponding to our heaviest 
samples. The experiments are carried out so that the two blocks of the same slenderness are put on top of the 
shaking table and excited at the same time with exactly the same acceleration function, as can be seen in Figure 
12. 
 

     

Figure 12. Two blocks of the same slenderness ratio but different size (left) on the shaking table system 
Quanser ST-III (right). 

In each experiment the displacement function actually performed by the shaking table slightly differs from 
the input displacement function, owing to the inertia of the table and the samples. The displacement is 



N1. Surname1, N2. Surname2, N3. Surname3: Title of the paper 10 
________________________________________________________________________________________________________________________ 

 

measured by a linear encoder with one million counts per meter each 0.002 seconds. These results are 
numerically differentiated with respect to time twice (using the mid-point rule) to check for the 'real' amplitude 
and frequency of the acceleration function of the table.  Furthermore, the acceleration is measured by a biaxial 
accelerometer embedded in the shaking table system each 0.002 seconds.  

The results obtained from post-processing the encoder measurement and from accelerometers 
measurement has shown to be close to the input values given to the shaking table. For this reason, the 
experimental results in the rest of this work are presented with respect to the input amplitude and acceleration 
function. 

 
5 Experimental validation of the algorithm for sine-wave acceleration   

The set of four blocks - two bulky blocks with slenderness ratio 
௛

௕
= 2.25 and two slender blocks with 

slenderness ratio 
௛

௕
= 4.5 - subjected to a sine-wave acceleration function is chosen for experimental validation. 

The acceleration function is input via a single sine-wave displacement function added to a linear displacement 
function (12), which satisfies the condition of zero initial velocity of the shaking table, as described in the 
previous section. The sine-wave excitation described in Section 4.2 is the only one chosen in the experimental 
analysis because it is much more suitable for testing sensitivity to overturning upon variation of the restitution 
coefficient (see Section 3.2).  

The experiments are performed for each acceleration amplitude starting from the highest acceleration 
frequency and after each experiment resulting in stable rocking the frequency is lowered. This is repeated until 
overturning is reached. The experiments close to the boundary between overturning and not-overturning 
regions are repeated at least three times and the outcome has proven to be repeatable. 
 

5.1 Slender blocks 
௛

௕
= 4.5 

 

The experimentally obtained results for both slender blocks B6M and B6L are shown in Figure 13, along 
with the simulation results with the average parameter 𝑘 for each size of the block. These experiments strongly 
validate the numerically obtained overturning conditions with the restitution coefficient as reported in [24] 
based on the free rocking tests. 

 

Figure 13. Stability graph due to a single sine wave for blocks B6M and B6L with 
௛

௕
= 4.5 and average 

parameter k for each size (T - translation, O - overturning, R - rocking). 

The shaking table system limit is declared as 3.21𝑔 but, even before reaching the limit, the actual 
acceleration output starts to resemble a double constant function more than a single sine-function. This 
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prevents us from checking the overturning conditions for the amplitudes of acceleration functions larger than 
cca 25

௠

௦మ ≈ 2.55𝑔 (black dashed line labelled as ST limit in Figures 13-16).  

In Figure 14 the experimental results are also compared to the simulation results with the parameter 𝑘 taken 
as the exact value obtained for that specific block in the previous free-rocking study [24] (k = 0.8241 for 
B6M, k = 0.7214 for B6L). The boundary between overturning and non-overturning regions has now 
somewhat changed - specifically, the overturning area is noticeably larger for the smaller block, but for the 
acceleration range tested, the experimental results compare equally well with the simulation results. 
                       

 

Figure 14. Stability graph due to a single sine wave for blocks B6M and B6L with ℎ/𝑏 = 4.5 and exact 
parameter k for each block (T - translation, O - overturning, R - rocking). 

5.2 Bulky blocks 
௛

௕
= 2.25 

 

The experimentally obtained results for both bulky blocks B3M and B3L are shown in Figure 15 along 
with the simulation results with the average restitution for each size from [24] taken into account. The 
experimental results strongly validate the simulation results in case of the larger block B3L. However, the 
smaller block B3M overturns in the experiments in the area where the simulations show that stable rocking 
should occur. 
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Figure 15. Stability graph due to a single sine wave for blocks B3M and B3L with  
௛

௕
= 2.25 and average 

parameter k for each size (T - translation, O - overturning, R - rocking). 

In Figure 16 the experimental results are again compared to the simulation results with the exact value of 
the parameter 𝑘 for each block from the free-rocking study in [24] (k = 0.7595 for B3M, k = 0.7259 for 
B3L). The overturning area for block B3M is now substantially larger and such a simulation agrees with the 
experimental results much better. 
 

 

Figure 16. Stability graph due to a single sine wave for blocks B3M and B3L with 
௛

௕
= 2.25 and exact 

parameter k for each block (T - translation, O - overturning, R - rocking). 

The sensitivity of the outcome of rocking behaviour (overturning/stable rocking) to small changes in parameter 
k (thus, in coefficient of restitution) are most obvious if two rotation time-histories of the same block subject 
to the same base excitation but with different values of parameter k are compared. This is presented in Figure 
17 for block B3M subject to a single sine wave excitation with 

ఠ

௣
 = 6 and 

௔బ

୥ ୲ୟ୬ ఈ
= 6.1 with parameter k equal 
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to 0.8608 (corresponding to the yellow square in Figure 15) and 0.7595 (corresponding to the yellow square 
in Figure 16).  
 

 
Figure 17. Rotation time-histories for block B3M with parameter k taken as average parameter for size M 

(blue line) and exact value for block B3M (red line). 

Decrease in parameter k results in an increase in coefficient of restitution, thus less energy is lost at the impact 
just before 0.14 seconds of motion (Figure 17). Such variation in parameter k for block B3M describes a 2.3 
mm shift in position of the resultant contact impulse, but it is clearly enough to cause different behaviour after 
that. In this case, such a shift represents the distinction between block rocking in a stable manner and 
overturning, which is a critical outcome.  

 
6 Discussion and conclusions   

  

A numerical procedure to obtain overturning conditions for a single rigid block rocking on top of a rigid 
base, without sliding or jumping, due to a single harmonic wave excitation acceleration is developed and 
validated against experiments. The code involves an impact detection procedure, and takes into account energy 
loss during each impact of the block with the base via a restitution coefficient. Both the well-known Housner's 
restitution coefficient [3], and a recently reported modified restitution coefficient [22], [23] are analysed for 
their predictive power as stability estimates.  

The actual point of impact, needed in the latter, is taken from a free rocking series of tests in [24]. A series 
of controlled experiments with aluminium blocks on a shaking table subjected to a single sine-wave 
acceleration function is designed and carried out. The experiments are conducted for two bulky blocks 

(slenderness 
௛

௕
= 2.25) and two slender blocks (slenderness 

௛

௕
= 4.5) of different sizes. The experimental 

validation once again proves that Housner's restitution formula is overly liberal and should be avoided in 
practical use. The modified formula [22], [23] is clearly a better fit to describe real energy loss during rocking, 
and is strongly encouraged if the position of the impact impulse may be appropriately estimated. In this work 
this has been performed in conjunction with the free rocking tests conducted earlier. 

 
The simulation involving larger blocks and the restitution coefficient [22], [23] with the additional 

parameter obtained in this way agree with the experiment very nicely, in contrast with the results using the 
original Housner's restitution, which is particularly visible for the bulky block. The simulation involving 
smaller blocks is less precise but still supportive of the use of the modified restitution formula. However, 
stability graphs for smaller blocks produced numerically by using both the average parameter k obtained for a 
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given size and the exact parameter k obtained for the analysed block from the free-rocking study result in 
significantly different overturning areas. When these numerically obtained stability graphs are validated 
against experimental data, it is clear that the overturning area should be based on the exact value of parameter 
k for smaller blocks, while it is accurate enough to use the average parameter k for larger blocks. The 
experimentally obtained cases of overturning which are still outside of the numerically obtained overturning 
area (after including the exact value of parameter k) show that the method to estimate the impact position 
should be improved and extended to even smaller blocks, which is what we plan to address in our future work.  
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