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ANALYTICAL SOLUTION FOR THE PROBLEM OF 
PURE BENDING OF ORTHOTROPIC 

MICROPOLAR PLATE 

ANALITIČ KO RJEŠ ENJE PROBLEMA Č IŠTOG 
ŠAVIJANJA ORTOTROPNE MIKROPOLARNE PLOČ E 

Damjan Jurković *, Gordan Jelenić *, Sara Grbčić Erdelj * 

Abstract 

When analysing the problem of pure bending of a plate, it can be noticed that, for 
cylindrical bending, a spatial problem collapses into a plane-strain problem. For 
such a boundary-value problem of the Cosserats' continuum, three engineering 
parameters are required: Young’s modulus, Poisson’s ratio and the characteristic 
length for bending. Here we consider an orthotropic form of such a problem, 
whereby two Young’s moduli, four Poison’s ratios and one characteristic length for 
bending are found to be sufficient to propose a mathematical model of this problem. 
General equations of the isotropic micropolar continuum are introduced, and the 
analytical solution for the pure bending of an isotropic micropolar plate is 
generalized to the case of orthotropic microstructure. By defining the ratio of a 
distributed force and a distributed moment boundary conditions required for the 
pure-bending state, a closed-form solution to this problem is obtained in terms of 
displacement, strains and stress functions. It is shown that the derived results reduce 
to the isotropic ones if a material isotropy is assumed. 

Key words: orthotropic micropolar continuum, analytical solution of pure bending, 
characteristic length for bending 

Sažetak  

Pri analizi problema čistog savijanja ploče moguće je uočiti kako se, za cilindrično 
savijanje, prostorni problem može svesti na problem ravninskog stanja deformacija. 
Za takav problem rubnih vrijednosti Cosseratovog kontinuuma potrebna su tri 
materijalna parametra: Youngov modul elastičnosti, Poissonov koeficijent i 
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karakteristična duljina za savijanje. Ovdje razmatramo ortotropni oblik takvog 
problema, gdje su dva Youngova modula, četiri Poissonova koeficijenta i jedna 
karakteristična duljina za savijanje dovoljni za definiranje matematičkog modela 
problema. Predstavljene su opće jednadžbe izotropnog mikropolarnog kontinuuma, 
te je analitičko rješenje za problem čistog savijanja mikropolarne ploče 
generalizirano na slučaj ortotropne mikrostrukture. Definiranjem omjera rubnih 
uvjeta distribuiranih sila i distribuiranih momenata potrebnih za stanje čistog 
savijanja dobiveno je rješenje u zatvorenom obliku, izraženo preko funkcija pomaka, 
deformacija i naprezanja. Prikazano je da se uvođenjem materijalne izotropije 
izvedeni izrazi svode na poznate izotropne rezultate. 

Ključne riječi: ortotropni mikropolarni kontinuum, analitičko rješenje čistog 
savijanja, karakteristična duljina za savijanje 

1. Introduction 
Micropolar elasticity theory, also known as Cosserats' theory, is a 

generalised continuum theory. As the theory uses an additional kinematic 
field, the so-called microrotation filed, six engineering parameters are 
needed, compared to just two used in classical elasticity. Identification of 
these parameters is the subject of numerous studies. 

This paper is setting theoretical foundation for identification of one of 
those micropolar parameters, the so-called characteristic length for 
bending, for an orthotropic micropolar continuum. In an effort to obtain 
this parameter, Gauthier’s closed-form analytical solution for the pure 
bending of an isotropic micropolar plate [1] is generalised for the case of 
orthotropic micropolar material. It should be noted that the present 
orthotropic micropolar continuum does not account for all the possible 
effects outlined in [2], which would demand a total of 24 material 
parameters. Rather, orthotropy is introduced just in the stress-strain 
constitutive tensor, while the constitutive tensor relating the couple-
stresses and the curvatures is assumed to remain isotropic. This results in 
just one characteristic length for bending for a planar problem. 
Furthermore, the problem of pure bending does not demand any other 
micropolar parameters, which leaves us with seven parameters in total. 

The overall notation used for the material parameters is as in [3], and a 
summation convention is used throughout this work. 

2. Governing equations of the micropolar elasticity theory 
Compared to the classical Cauchy continuum, micropolar continuum is 

described by six degrees of freedom, three translational and three 
rotational. The rotational degrees of freedom (microrotations) are 

independent from the rotations resulting from the displacements as the 
skew-symmetric part of the displacement tensor (the so-called 
macrorotations). 

Let us consider a homogeneous isotropic body of volume V bounded by 
a surface S, subject to volume force and moment loads    and    and 
surface force and moment loads    and   . The deformation of the body is 
defined by the displacement vector u and the microrotation vector φ, 
while the stress state is defined by the stress tensor     and the couple-
stress tensor    . These stresses are connected to the strain tensor     and 
the curvature tensor    . All four of these tensors are non-symmetric. The 
force equilibrium equations can be written as 

                                                                   
where i, j = x, y, z. The first index to the stress tensor denotes the 
coordinate direction of stress action, and the second index direction of the 
surface normal. The comma denotes a spatial differentiation in a given 
direction. From the moment equilibrium, the second set of equilibrium 
equations is derived as 

                                                              
where      is the Levi-Civita permutation tensor. In the couple-stress 
tensor the first index again denotes the axial direction of the couple-stress 
action and the second index denotes the surface normal. Components of 
stresses and couple-stresses acting on an infinitesimal two-dimensional 
body are shown in Figure 1. The stress tensor is non-symmetric, except for 
the case when       and        which is equivalent to the classical 
elasticity theory. 

The force and moment equilibria on the body surface read 
                                                               
                                                              

where    is the surface normal vector. Equations (3) and (4) constitute the 
so-called natural or load boundary conditions, while the so-called essential 
or geometric boundary conditions (on u and φ) are applied simply by 
prescribing the actual displacements and microrotations to the boundary. 
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Figure 1. Stress and couple-stress components acting on a two-dimensional body 
The kinematic equations are defined by

                                                                   
                                                                   

The constitutive equations read 
                                                                
                                                               

where i, j, p, q = x, y, z. For an isotropic continuum, these equations may be 
written as 

                                                      
                                                  

where     is the Kronecker delta symbol. Here   and   are known from 
classical elasticity as the Lamé constants, while  ,  ,  ,   are additional 
micropolar material constants. These material constants can be described 
by six engineering constants: Young’s modulus E, Poisson’s ratio n, 
coupling number between the microrotation and microrotation      , 
polar ratio        , and the characteristic lengths for torsion and 

bending,    and    respectively. The relationships between the two sets of 
parameters can be found in [4]. 

Since kinematic microstrain system (5) is overdetermined, 
displacement and microrotation fields cannot be defined uniquely. To 
ensure uniqueness and continuity of the kinematic fields it is necessary to 
apply constraints to strain values      and     via compatibility conditions: 

                            
              

                                      

with                . Let us next look at the planar problem in xy-
plane. For plane problems, the kinematic fields involve only three 
components: displacements    and    and microrotation   . This is 
sometimes called the first planar problem (e.g. [5]). Next, if we assume that 
the planar problem is that of a plane-strain type, the remaining stresses 
are   〈            〉  and   〈      〉 , and the remaining 
strains   〈            〉  and   〈      〉 , while     ceases 
to be an independent stress component. It is shown in [3] that in this case 
the material parameter   disappears. Finally, compatibility conditions are 
simplified to just three equations and read 

     
       

     
    

     
       

     
                                                  

      
         

     

3. Reduced orthotropic material model  

 Orthotropic materials are the materials whose material properties 
differ in the directions of a set of orthogonal axes. Considering classical 
theory, these materials have three Young's moduli    and six Poisson's 
ratios    , where             and    . The first index next to a Poisson's 
ratio denotes the direction of the applied axial strain, and the second index 
denotes the direction of the resulting lateral strain. We will next introduce 
orthotropy to our material model. 

Micropolar orthotropic plane strain constitutive equations are 
defined in [6] as 
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where     are undefined material parameters. According to [7], the 
constitutive equation for the normal strains reads  
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Since the compliance matrix in (15) is symmetric, the number of 
independent engineering parameters is reduced to six. It may be shown 
that for the plane strain problem this equation can be rewritten as 
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where  ̃,   ,    are introduced to relate the material parameters as 
follows: 
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Parameters    ,     and      in (14) can be obtained from (16). In this 
paper parameters    ,     and     can remain undefined as they will be 
proven to vanish in further analysis. As already mentioned, in the present 
model, the constitutive tensor relating couple stresses to curvatures is 
understood to keep its isotropic form as in (10). 

4. Pure bending of a micropolar plate 
Let us observe a three-dimensional micropolar isotropic plate with a 

thickness h, length L and width B, where L, B >> h.  The plate is subjected to 
distributed edge moments    and   . It is shown in [8] that by setting 
       bending of a plate is no longer anticlastic. Now the curvature in 
yz-plane disappears and the plate bends in a cylindrical shape, hence the 
problem is reduced to that of a plane strain type. From here we assume 
that the isotropic plane strain problem is just as described in the last 
section before the conclusions of this paper, where we show that the 
orthotropic solution we are set to derive includes this isotropic solution as 
a special case. Figure 2 shows bending happening in xy-plane, where now, 
for a planar case      .  

Bending moment M may take place as a result of a linearly changing 
continuous load     applied to the boundary: 

        
                                                           

 

Figure 2. Cross-sectional view of the pure bending of a plate 

While this holds true for the classical elasticity theory, micropolar 
elasticity requires additional constant continuous couple-stress    , as 
shown in Figure 3. Now the resultant bending moment M is obtained as  
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from which can be seen that neither     nor     can be derived uniquely 
from the applied bending moment. Upon further inspection of boundary 
conditions it can be noted that all the existing stress components are 
constant in all directions except for the y direction.  Following from that it 
can be noted from the equilibrium equations (1) and (2), while presuming 
that the volume forces are equal to zero, that: 

    
                  

    
                                                           

    
                   ∫(       )           

 

Figure 3. Boundary conditions for micropolar continuum 

Since upper and lower boundary do not have any loads applied to them, 
   ,     and     are equal to zero on these edges. Hence, according to 
(20),     and      disappear and  

     ∫                                                
 
 

  
 

 

For the case of pure bending, the shear strains need to be equal to zero: 

 

                                                                

From (14) and (22) it is obvious that      , and then, from (21)      . 
The only remaining nonzero stresses are thus     and    . 

 Since      , constitutive equation (16) reads 

       
  

                                                        

Now constitutive equation (16) for     reads 

     ̃
  

                                                         

Constitutive equation (10) for     in plane strain takes the following form: 

              

But since       it can be seen from (6) that: 

       
     

which means that    is a function of x only.  

 The two remaining stresses are defined by constitutive equations 
(24) and, for the plane strain form of (10): 

                                                               

Boundary condition (3), after substituting (18) reads 

            
                                                  

and (4) reads 

                                                                

By manipulating (24) and substituting (26) we get: 
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and then by substituting (28) into (23): 

       
 ̃

  
                                                         

Finally, by substituting (27) into (25) we obtain 

       
                                                            

All the strain components are now defined by the applied loads. It can now 
be noted from the kinematic equations (5) and (6) that 
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Integration of (33) immediately yields 

      
                                                            

By substituting all zero strains into (5) it can be seen that: 

   
                                                               

   
                                                               

Before we integrate these equations to obtain kinematic field from 

       
        

      

    
   
     

   
      

it is necessary to ensure its continuity. We can do so using the 
compatibility equations (13). Substituting all the values into the first 
compatibility equation reads 

     ̃
  
  

   
                                                  

while the second and the third compatibility equations are identically 
satisfied. Thus, if we want the assumed stress state (constant in x direction 
and changing in y direction with zero shear stresses – the state of pure 
bending) to be true, the applied loads    and     must be mutually 
dependent. This dependence can be defined from (37) as: 

   
  

     ̃
 
                                                  

It is known from [5] that: 

                                                                

The Lamé constant   (the shear modulus) is defined as [8]: 

   
                                                             (40) 

This parameter can be transformed into analogue orthotropic parameter 
as 
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Substitution of (39) and (41) in (38) results in 
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It is known from [5] that: 

                                                                

The Lamé constant   (the shear modulus) is defined as [8]: 

   
                                                             (40) 

This parameter can be transformed into analogue orthotropic parameter 
as 

     
 ̃

       
                                                  

Substitution of (39) and (41) in (38) results in 

   
  

    
 

 
  

      
   

  
      

                                     

where 
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Now that the dependence between    and     has been established, 
it is possible to calculate the resultant boundary moment M (19) in terms 
of only one of the loads, i.e. 

          
    

   

            
   

                             

The applied loads can now be written in terms of the moment as 

       
        

 
  

                                                  

       
        

 
                                                  

By substituting (45) and (46) in (26) and (27) respectively, the solutions 
for the non-zero stress components are obtained as 

         
        

 
  

                                                 

       
        

 
                                                  

By substituting (45) in (28), (29) and substituting (46) in (30), with 
substitution of (39) and (41) in the final result, the analytical solutions for 
the strains are obtained as: 

     
        

        
 
 ̃  

                                            

            
        

 
 ̃  

                                           

            
        

 
 ̃  

                                            

From (33), by integrating the curvature in (51) over x we get the 
microrotation field as 

   
        
        

 
 ̃  

                                          

which proves that    is a function of x only. The displacement fields    and 
   must satisfy (31), (32), (35) and (36). The functions that satisfy these 
conditions are  

    
        
        

 
 ̃  

                                          

   
 
 

      
        

 
 ̃  

                                     

It should be noted that if    and     do not satisfy (42); these solutions do 
not hold and pure bending cannot take place.  

 

5. Reduction of solution to isotropic continuum  

When reducing orthotropic continuum to the isotropic one, all the 
material parameters are reduced to just two as 

      

       

for i, j = x, y, z. This means that orthotropic constants  ̃,    and    from 
(17) take the following form: 

 ̃   
      

                                                                 

   
 

     

When equations (55) are substituted in (47) and (48), the analytical 
solution for pure bending of isotropic micropolar continuum follows as 
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In the same manner, by substituting (55) in (49), (50) and (51), the 
analytical solution for the strain components is obtained as 

         

        
 
   

                                           

     
   

    

        
 
   

                                       

        

        
 
   

                                            

Finally, by substituting (55) in (52), (53) and (54), the isotropic 
micropolar kinematic fields for the case of pure bending are obtained as 

       

        
 
   

                                                 

        

        
 
   

                                             

    
 

    

        
 
   

                                           

It can be verified that equations derived in this section are equal to those 
derived in [1].  

6. Conclusion 
It can be seen that the reduced orthotropic micropolar material model 

presented demands seven material parameters to be known: two Young’s 
moduli, four Poisson’s coefficients and one characteristic length for 
bending. While this model is not fully orthotropic, it can be used as a tool 
for identification of the characteristic length, which will be shown in a 
separate work. Its advantage is that it enables such identification without 
drastically increasing the number of other micropolar engineering 

parameters. While the engineering parameters known from classical 
elasticity theory can be easily identified for a given microstructure, the 
methods for identifying the micropolar parameters are not yet generally 
recognised. 

The disadvantage of this model is that, as can be seen from the cited 
references, a larger number of characteristic lengths for bending should be 
considered in order to properly model micropolar materials. Furthermore, 
the model is not universally applicable, and can really only be used to 
identify the characteristic length for bending. 

Finally, it is shown that by including isotropic material parameters in 
their orthotropic equivalents, analytical solutions known from the 
literature for this type of problem are obtained. 
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