Title Stable Long-Term Numerical Integration of Motion of Beams and Their Interaction
Title (croatian) Stabilno dugotrajno numeričko integriranje kretanja grednih nosača i njihova interakcija
Author Jan Tomec
Mentor Gordan Jelenić (mentor)
Mentor Sara Grbčić Erdelj (komentor)
Committee member Edita Papa Dukić (predsjednik povjerenstva)
Committee member Olivier Brüls https://orcid.org/0000-0003-2668-1353 (član povjerenstva)
Committee member Johannes Gerstmayr https://orcid.org/0000-0003-3576-1830 (član povjerenstva)
Granter University of Rijeka Faculty of Civil Engineering Rijeka
Defense date and country 2024, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Civil Engineering
Universal decimal classification (UDC ) 624/625 - Civil and structural engineering. Civil engineering of land transport. Railway engineering. Highway engineering
Abstract This thesis explores the advancement and refinement of numerical models for beams within the finite element method, a critical tool widely adopted across industries for simulations. Specifically, my research has been focused on the dynamics of beams and their conservation properties when considered using geometrically non-linear models. The second research question concerns contacts between beams. Both of these are significant as model reduction techniques, which allow faster and more complex simulations of our physical environment. The core objectives of this work are to investigate the conservation of mechanical properties of beams for long-term stable formulations and to develop a robust method for understanding and simulating beam-to-beam contact mechanics across diverse scenarios. Our methodology blends theoretical analysis with numerical simulations, focusing on geometrically-exact beam theory and beam-to-beam contacts, supported by the development of open-source research code. As a result, I have developed a novel dynamic beam finite element, which is capable of conserving linear and angular momentum and almost conserve energy. This element features an advanced interpolation of position and rotation on SE(3) group, which allows the element to be objective and locking-free. The conservation properties have been achieved using the Lie midpoint rule for time integration and an independent velocity field. Additionally, I have devised several contact formulations for line-to-line contacts, notably applying the existing mortar method to beams, and introducing a novel, unbiased contact formulation. Both of these methods have been combined with the Lagrange-multiplier and the penalty method and compared using benchmark tests. The thesis contributes to the field by offering novel approaches in beam dynamics and contacts, characterised by robustness and stability. I have discussed their advantages and drawbacks in detail and point out potential areas for further investigation.
Abstract (croatian) Ova disertacija istražuje napredak i poboljšanje numeričkog modela grede u okviru metode konačnih elemenata, ključnog alata koji je široko prihvaćen u industriji za simulacije. Konkretno, naše istraživanje je bilo usmjereno na dinamiku greda i sačuvanija mehaničkih svojstva kada se ti razmatraju korištenjem geometrijski nelinearnih modela. Drugo istraživacko pitanje odnosi se na kontakte između greda. Oba su značajna kao tehnike redukcije modela, koje omogućavaju brže i kompleksnije simulacije. Osnovni ciljevi ovog rada su istražiti sačuvanije mehaničkih svojstva greda kod dugoročno stabilne formulacije i razviti robustnu metodu za razumijevanje i simuliranje mehanike kontakta grede s gredom u različitim scenarijima. Naša metodologija kombinira teorijsku analizu s numeričkim simulacijama, fokusirajući se na teoriju geometrijski točnih greda i kontakte grede s gredom, uz podršku razvoja otvorenog istraživačkog koda. Kao rezultat, razvili smo novi dinamički konačni element za grede, koji je sposoban sačuvati linearnu i kutnu količinu kretanja i gotovo sačuvati energiju. Ovaj element sadrži naprednu interpolaciju pozicije i rotacije na SE(3) grupi, što elementu omogućava da bude objektivan i bez shear-locking-a. Svojstva sačuvanja postignuta su korištenjem Liejevog srednjeg pravila za integraciju vremena i neovisnog polja brzine. Osim toga, osmislili smo nekoliko formulacija kontakta za kontakte tipa linija s linijom, naime primjenjujući postojeću mortar metodu na grede, te uvođenjem nove, nepristrane formulacije kontakta. Obe ove metode kombinirane su s Lagrangeovim množiteljima i penalty metodom te uspoređene brojnim testovima. Disertacija doprinosi području nudeći nove pristupe u dinamici greda i kontakta, karakterizirane robusnošću i stabilnošću. Detaljno smo raspravljali o njihovim prednostima i nedostacima te istaknuli potencijalna područja za daljnje istraživanje.
Keywords
Finite element method
Geometrically-exact beam theory
Energy–momentum conservation/decay
Mortar method
Lie groups
Keywords (english)
Metoda konačnih elemenata
Geometrijski točna teorija greda
Očuvanje/propadanje energije-količine kretanja
Mortar metoda
Liejeve grupe
Language english
URN:NBN urn:nbn:hr:157:363303
Promotion 2024
Study programme Title: Obtaining a doctorate of science outside of doctoral studies Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti (doktor/doktorica znanosti)
Type of resource Text
Extent X, 118 str.; 31 cm
File origin Born digital
Access conditions Open access
Terms of use
Created on 2024-10-14 12:03:55