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1. Introduction

The Hermite–Hadamard inequality is one of the most important mathematical in-
equalities. It was discovered independently first by Hermite [1] and later by Hadamard [2].
The classical Hermite–Hadamard inequality provides an estimate from below and above
the mean value of convex function f : [a, b]→ R. More precisely, we have the following.

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
.

To illustrate the importance of the Hermite–Hadamard inequality, let us mention
that the Hermite–Hadamard inequality can be considered as the necessary and sufficient
condition for convexity of a function. Furthermore, the Hermite–Hadamard inequality has
an important role in numerical analysis, mathematical analysis and functional analysis.
Various generalizations, extensions and applications of the Hermite-Hadamard inequality
have appeared in the literature (see [3–8]).

In this paper, we consider the weighted Hermite–Hadamard inequality for convex
functions given in following theorem (see [8–10]).

Theorem 1. Let p: [a, b]→ R be a non-negative function. If f : [a, b]→ R is a convex function,
then we have the following:

f (m) ≤ 1
P(b)

∫ b

a
p(x) f (x)dx ≤ b−m

b− a
f (a) +

m− a
b− a

f (b)

or

P(b) f (m) ≤
∫ b

a
p(x) f (x)dx ≤ P(b)

[
b−m
b− a

f (a) +
m− a
b− a

f (b)
]

, (1)

where the following is the case.

P(t) =
∫ t

a
p(x) dx and m =

1
P(b)

∫ b

a
p(x)x dx.
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In 1918, Steffensen proved the following inequality (see [11]).

Theorem 2 ([11]). Suppose that f is non-increasing and g is integrable on [a, b] with 0 ≤ g ≤ 1
and λ =

∫ b
a g(t)dt. Then, we have the following.

∫ b

b−λ
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+λ

a
f (t)dt. (2)

The inequalities are reversed for f non-decreasing.

Many papers have been devoted to generalizations and refinements of Steffensen’s
inequality and its connection to other well-known inequalities such as Gauss–Steffensen’s,
Hölder’s, Jenssen-=Steffensen’s and other inequalities. A complete overview of the results
related to Steffensen’s inequality can be found in monographs [12,13].

By using the Mitrinović [14] result in which the inequalities in (2) follow from identi-
ties: ∫ a+λ

a
f (t)dt−

∫ b

a
f (t)g(t)dt

=
∫ a+λ

a
[ f (t)− f (a + λ)][1− g(t)]dt +

∫ b

a+λ
[ f (a + λ)− f (t)]g(t)dt

and ∫ b

a
f (t)g(t)dt−

∫ b

b−λ
f (t)dt

=
∫ b−λ

a
[ f (t)− f (b− λ)]g(t)dt +

∫ b

b−λ
[ f (b− λ)− f (t)][1− g(t)]dt

and using Taylor’s formulae in points a and b

f (x) =
n−1

∑
i=0

f (i)(a)
i!

(x− a)i +
1

(n− 1)!

∫ x

a
f (n)(t)(x− t)n−1dt

f (x) =
n−1

∑
i=0

f (i)(b)
i!

(x− b)i − 1
(n− 1)!

∫ b

x
f (n)(t)(x− t)n−1dt

in paper [15], the authors proved the following identities related to generalizations of
Steffensen’s inequality.

Theorem 3 ([15]). Let f : [a, b]→ R be such that f (n−1) is absolutely continuous for some n ≥ 2
and let g: [a, b]→ R be an integrable function such that 0 ≤ g ≤ 1. Let λ =

∫ b
a g(t)dt and let the

function G1 be defined by the following.

G1(x) =

{∫ x
a (1− g(t))dt, x ∈ [a, a + λ],∫ b
x g(t)dt, x ∈ [a + λ, b].

Then, we have the following:

∫ a+λ

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2

∑
i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x− a)idx

= − 1
(n− 2)!

∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
f (n)(t)dt

(3)
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and the following is obtained.

∫ a+λ

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2

∑
i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x− b)idx

=
1

(n− 2)!

∫ b

a

(∫ t

a
G1(x)(x− t)n−2dx

)
f (n)(t)dt.

(4)

Theorem 4 ([15]). Let f : [a, b]→ R be such that f (n−1) is absolutely continuous for some n ≥ 2
and let g: [a, b]→ R be an integrable function such that 0 ≤ g ≤ 1. Let λ =

∫ b
a g(t)dt and let the

function G2 be defined by the following.

G2(x) =

{∫ x
a g(t)dt, x ∈ [a, b− λ],∫ b
x (1− g(t))dt, x ∈ [b− λ, b].

Then, we have the following:

∫ b

a
f (t)g(t)dt−

∫ b

b−λ
f (t)dt +

n−2

∑
i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x− a)idx

= − 1
(n− 2)!

∫ b

a

(∫ b

t
G2(x)(x− t)n−2dx

)
f (n)(t)dt

(5)

and the following is obtained.

∫ b

a
f (t)g(t)dt−

∫ b

b−λ
f (t)dt +

n−2

∑
i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x− b)idx

=
1

(n− 2)!

∫ b

a

(∫ t

a
G2(x)(x− t)n−2dx

)
f (n)(t)dt.

(6)

Since, in this paper, we will deal with n−convex functions, let us recall the definition
of the n−convex function. For more details on convex functions, we refer the interested
reader to [6,8].

Let f be a real-valued function defined on the segment [a, b]. The divided difference of
order n of the function f at distinct points x0, ..., xn ∈ [a, b] is defined recursively (see [8])
by the following.

f [xi] = f (xi), (i = 0, . . . , n)

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.
The definition may be extended to include the case in which some (or all) of the points
coincide. Assuming that f (j−1)(x) exists, we define the following.

f [x, . . . , x︸ ︷︷ ︸
j−times

] =
f (j−1)(x)
(j− 1)!

.

Definition 1 ([8]). A function f : [a, b] → R is said to be n-convex on [a, b], n ≥ 0, if for all
choices of (n + 1) distinct points in [a, b], the n − th order divided difference of f satisfies the
following.

f [x0, ..., xn] ≥ 0.

Note that 1−convex functions are non-decreasing functions and 2−convex functions
are convex functions. An n−convex function need not to be n−times differentiable; how-
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ever, if f (n) exists, then f is n−convex if and only if f (n) ≥ 0. The following property also
holds: if f is an (n + 2)−convex function, then there exists the n−th derivative f (n), which
is a convex function.

The aim of this paper is to use identities related to generalizations of Steffensen’s
inequality, obtained by using Taylor’s formula, to prove new weighted Hermite–Hadamard-
type inequalities for (n + 2)−convex functions.

2. Main Results

In this section, applying identities given in Theorems 3 and 4 and the properties of
n−convex functions, we derive new weighted Hermite–Hadamard-type inequalities.

Theorem 5. Let f : [a, b]→ R be (n + 2)−convex on [a, b] and f (n−1) absolutely continuous for
n ≥ 2. Let g: [a, b] → R be an integrable function such that 0 ≤ g ≤ 1 and λ =

∫ b
a g(t)dt. Let

function G1 be defined by the following.

G1(x) =

{∫ x
a (1− g(t))dt, x ∈ [a, a + λ],∫ b
x g(t)dt, x ∈ [a + λ, b].

(7)

Then, we have the following:

P1(b) · f (n)(m1) ≤

(n− 2)!

[∫ b

a
f (t)g(t)dt−

∫ a+λ

a
f (t)dt−

n−2

∑
i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x− a)idx

]

≤ P1(b) ·
[

b−m1

b− a
f (n)(a) +

m1 − a
b− a

f (n)(b)
]

,

(8)

where the following is the case:

P1(b) =
1

(n− 1) · n

(∫ b

a
g(x)(x− a)ndx− λn+1

n + 1

)
(9)

and the following is obtained.

m1 = a +
1

(n− 1) · n · (n + 1) · P1(b)

(∫ b

a
g(x)(x− a)n+1dx− λn+2

n + 2

)
. (10)

Proof. Since f (n−1) is absolutely continuous, function f satisfies the conditions of Theo-
rem 3. Therefore, identity (3) holds.

From condition 0 ≤ g ≤ 1, function G1 defined by (7) is non-negative. Hence, for
every n ≥ 2, we have the following.

∫ b

t
G1(x)(x− t)n−2dx ≥ 0, t ∈ [a, b].

Define

p(t) =
∫ b

t
G1(x)(x− t)n−2dx.

Since the function f is (n + 2)−convex, function f (n) is convex. Furthermore, function
p is non-negative, so we can apply Theorem 1 and obtain the following inequality:

P1(b) · f (n)(m1) ≤
∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
f (n)(t)dt

≤ P1(b) ·
[

b−m1

b− a
f (n)(a) +

m1 − a
b− a

f (n)(b)
]

,
(11)
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where P1(b) and m1 are given by

P1(b) =
∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
dt

and

m1 =
1

P1(b)

∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
t dt.

By calculating P1(b) and m1, we obtain the following:

P1(b) =
∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
dt

=
∫ a+λ

a

(∫ x

a
(1− g(s))ds

)
(x− a)n−1

n− 1
dx +

∫ b

a+λ

(∫ b

x
g(s)ds

)
(x− a)n−1

n− 1
dx

=
∫ a+λ

a

(x− a)n

n− 1
dx + λ ·

∫ b

a+λ

(x− a)n−1

n− 1
dx−

∫ b

a

(∫ x

a
g(s)ds

)
(x− a)n−1

n− 1
dx

=
−λn+1

(n− 1) · n · (n + 1)
+
∫ b

a
g(x)

(x− a)n

(n− 1) · n dx

and

m1 =
1

P1(b)

∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
t dt

=
1

P1(b)

∫ b

a
G1(x)

(∫ x

a
(x− t)n−2 · t dt

)
dx

=
1

P1(b)

∫ b

a
G1(x)

(
t · −(x− t)n−1

n− 1

∣∣∣∣x
a
+
∫ x

a

(x− t)n−1

n− 1
dt
)

dx

=
1

P1(b)

∫ b

a
G1(x)

(
a · (x− a)n−1

n− 1
+

(x− a)n

(n− 1) · n

)
dx

= a +
1

P1(b)

∫ b

a
G1(x)

(x− a)n

(n− 1) · n dx

= a +
1

P1(b)

(
−λn+2

(n− 1) · n · (n + 1) · (n + 2)
+
∫ b

a
g(x)

(x− a)n+1

(n− 1) · n · (n + 1)
dx
)

.

Using identity (3) for the middle part of the inequality (11), inequality (11) becomes
inequality (8). Hence, the proof is completed.

Theorem 6. Let f : [a, b]→ R be (n + 2)−convex on [a, b] and f (n−1) absolutely continuous for
n ≥ 2. Let g: [a, b] → R be an integrable function such that 0 ≤ g ≤ 1 and λ =

∫ b
a g(t)dt. Let

function G1 be defined by (7). If the following is the case:∫ t

a
G1(x)(x− t)n−2dx ≤ 0, t ∈ [a, b],

then we have the following:

P2(b) · f (n)(m2) ≤

(n− 2)!

[∫ b

a
f (t)g(t)dt−

∫ a+λ

a
f (t)dt−

n−2

∑
i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x− b)idx

]

≤ P2(b) ·
[

b−m2

b− a
f (n)(a) +

m2 − a
b− a

f (n)(b)
]

,

(12)
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where

P2(b) =
1

(n− 1) · n

(
(a− b)n+1 − (a + λ− b)n+1

n + 1
+
∫ b

a
g(x)(x− b)ndx

)
and

m2 = b+
1

(n− 1) · n · (n + 1) · P2(b)

×
(
(a− b)n+2 − (a + λ− b)n+2

n + 2
+
∫ b

a
g(x)(x− b)n+1dx

)
.

Proof. If we assume the following:∫ t

a
G1(x)(x− t)n−2dx ≤ 0, t ∈ [a, b]

then we have the following.

−
∫ t

a
G1(x)(x− t)n−2dx ≥ 0, t ∈ [a, b].

Now similarly to the proof of Theorem 5 using the following non-negative function:

p(t) = −
∫ t

a
G1(x)(x− t)n−2dx

and identity (4), we obtain inequality (12). Similarly, we calculate the expressions for P2(b)
and m2 and obtain the following:

P2(b) = −
∫ b

a

(∫ t

a
G1(x)(x− t)n−2dx

)
dt

=
∫ a+λ

a

(∫ x

a
(1− g(s))ds

)
(x− b)n−1

n− 1
dx +

∫ b

a+λ

(∫ b

x
g(s)ds

)
(x− b)n−1

n− 1
dx

=
∫ a+λ

a
(x− a)

(x− b)n−1

n− 1
dx + λ ·

∫ b

a+λ

(x− b)n−1

n− 1
dx−

∫ b

a

(∫ x

a
g(s)ds

)
(x− b)n−1

n− 1
dx

=
(a− b)n+1

(n− 1) · n · (n + 1)
− (a + λ− b)n+1

(n− 1) · n · (n + 1)
+
∫ b

a
g(x)

(x− b)n

(n− 1) · n dx

and

m2 = − 1
P2(b)

∫ b

a

(∫ t

a
G1(x)(x− t)n−2dx

)
t dt

= − 1
P2(b)

∫ b

a
G1(x)

(∫ b

x
(x− t)n−2 · t dt

)
dx

= − 1
P2(b)

∫ b

a
G1(x)

(
t · −(x− t)n−1

n− 1

∣∣∣∣b
x
+
∫ b

x

(x− t)n−1

n− 1
dt

)
dx

= − 1
P2(b)

∫ b

a
G1(x)

(
−b · (x− b)n−1

n− 1
− (x− b)n

(n− 1) · n

)
dx

= b +
1

P2(b)

∫ b

a
G1(x)

(x− b)n

(n− 1) · n dx

= b +
1

(n− 1) · n · (n + 1) · P1(b)

×
(
(a− b)n+2

n + 2
− (a + λ− b)n+2

n + 2
+
∫ b

a
g(x)(x− b)n+1dx

)
.

Hence, the proof is completed.
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Theorem 7. Let f : [a, b]→ R be (n + 2)−convex on [a, b] and f (n−1) absolutely continuous for
n ≥ 2. Let g: [a, b] → R be an integrable function such that 0 ≤ g ≤ 1 and λ =

∫ b
a g(t)dt. Let

function G2 be defined by the following.

G2(x) =

{∫ x
a g(t)dt, x ∈ [a, b− λ],∫ b
x (1− g(t))dt, x ∈ [b− λ, b].

(13)

Then, the following is obtained:

P3(b) · f (n)(m3) ≤

(n− 2)!

[∫ b

b−λ
f (t)dt−

n−2

∑
i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x− a)idx−

∫ b

a
f (t)g(t)dt

]

≤ P3(b) ·
[

b−m3

b− a
f (n)(a) +

m3 − a
b− a

f (n)(b)
]

,

(14)

where

P3(b) =
1

(n− 1) · n

(
(b− a)n+1 − (b− λ− a)n+1

n + 1
−
∫ b

a
g(x)(x− a)ndx

)
and

m3 = a+
1

(n− 1) · n · (n + 1) · P3(b)

×
(
(b− a)n+2 − (b− λ− a)n+2

n + 2
−
∫ b

a
g(x)(x− a)n+1dx

)
.

Proof. We follow the similar arguments as in the proof of Theorem 5. As function f (n−1)

is absolutely continuous, the identity (5) holds. The inequality (14) follows directly from
Theorem 1, substituting the non-negative function p by a non-negative function of the
following:

p(t) =
∫ b

t
G2(x)(x− t)n−2dx

and a convex function f by a convex function f (n), and then using identity (5) for integral∫ b
a

(∫ b
t G2(x)(x− t)n−2dx

)
f (n)(t)dt. Furthermore, we calculate P3(b) and m3 as follows.

P3(b) =
∫ b

a

(∫ b

t
G2(x)(x− t)n−2dx

)
dt

=
∫ b−λ

a

(∫ x

a
g(s)ds

)
(x− a)n−1

n− 1
dx +

∫ b

b−λ

(∫ b

x
(1− g(s))ds

)
(x− a)n−1

n− 1
dx

=
∫ b

b−λ
(b− x)

(x− a)n−1

n− 1
dx− λ ·

∫ b

b−λ

(x− a)n−1

n− 1
dx +

∫ b

a

(∫ x

a
g(s)ds

)
(x− a)n−1

n− 1
dx

=
(b− a)n+1 − (b− λ− a)n+1

(n− 1) · n · (n + 1)
−
∫ b

a
g(x)

(x− a)n

(n− 1) · n dx,
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m3 =
1

P3(b)

∫ b

a

(∫ b

t
G2(x)(x− t)n−2dx

)
t dt

=
1

P3(b)

∫ b

a
G2(x)

(∫ x

a
(x− t)n−2 · t dt

)
dx

=
1

P3(b)

∫ b

a
G2(x)

(
t · −(x− t)n−1

n− 1

∣∣∣∣x
a
+
∫ x

a

(x− t)n−1

n− 1
dt
)

dx

=
1

P3(b)

∫ b

a
G2(x)

(
a · (x− a)n−1

n− 1
+

(x− a)n

(n− 1) · n

)
dx

= a +
1

P3(b)

∫ b

a
G2(x)

(x− a)n

(n− 1) · n dx

= a +
1

P3(b)

(
(b− a)n+2 − (b− λ− a)n+2

(n− 1) · n · (n + 1) · (n + 2)
−
∫ b

a
g(x)

(x− a)n+1

(n− 1) · n · (n + 1)
dx
)

.

Hence, the proof is completed.

Theorem 8. Let f : [a, b]→ R be (n + 2)−convex on [a, b] and f (n−1) absolutely continuous for
n ≥ 2. Let g: [a, b] → R be an integrable function such that 0 ≤ g ≤ 1 and λ =

∫ b
a g(t)dt. Let

function G2 be defined by (13). If the following is the case:∫ t

a
G2(x)(x− t)n−2dx ≤ 0, t ∈ [a, b]

then we obtain the following:

P4(b) · f (n)(m4) ≤

(n− 2)!

[∫ b

b−λ
f (t)dt−

n−2

∑
i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x− b)idx−

∫ b

a
f (t)g(t)dt

]

≤ P4(b) ·
[

b−m4

b− a
f (n)(a) +

m4 − a
b− a

f (n)(b)
]

,

(15)

where

P4(b) =
−1

(n− 1) · n

(
(−λ)n+1

n + 1
+
∫ b

a
g(x)(x− b)ndx

)
and

m4 = b− 1
(n− 1) · n · (n + 1) · P4(b)

(
(−λ)n+2

n + 2
+
∫ b

a
g(x)(x− b)n+1dx

)
.

Proof. Under the assumption that
∫ t

a G2(x)(x− t)n−2dx ≤ 0, it is obvious that the follow-
ing is the case:

p(t) = −
∫ t

a
G2(x)(x− t)n−2dx (16)

where it is a non-negative function. Again, replacing p(t) in Theorem 1 by (16) and f by
f (n) and then using the identity (6) for

∫ b

a

(∫ t

a
G2(x)(x− t)n−2dx

)
f (n)(t)dt,
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we obtain the required inequalities (15). Finally, a simple calculation yields the following:

P4(b) = −
∫ b

a

(∫ t

a
G2(x)(x− t)n−2dx

)
dt

=
∫ b−λ

a

(∫ x

a
g(s)ds

)
(x− b)n−1

n− 1
dx +

∫ b

b−λ

(∫ b

x
(1− g(s))ds

)
(x− b)n−1

n− 1
dx

= −
∫ b

b−λ

(x− b)n

n− 1
dx− λ ·

∫ b

b−λ

(x− b)n−1

n− 1
dx +

∫ b

a

(∫ x

a
g(s)ds

)
(x− b)n−1

n− 1
dx

= − (−λ)n+1

(n− 1) · n · (n + 1)
−
∫ b

a
g(x)

(x− b)n

(n− 1) · n dx

and

m4 =
−1

P4(b)

∫ b

a

(∫ t

a
G2(x)(x− t)n−2dx

)
t dt

=
−1

P4(b)

∫ b

a
G2(x)

(∫ b

x
(x− t)n−2 · t dt

)
dx

=
−1

P4(b)

∫ b

a
G2(x)

(
t · −(x− t)n−1

n− 1

∣∣∣∣b
x
+
∫ b

x

(x− t)n−1

n− 1
dt

)
dx

=
−1

P4(b)

∫ b

a
G2(x)

(
−b · (x− b)n−1

n− 1
− (x− b)n

(n− 1) · n

)
dx

= b +
1

P4(b)

∫ b

a
G2(x)

(x− b)n

(n− 1) · n dx

= b− 1
P4(b)

(
(−λ)n+2

(n− 1) · n · (n + 1) · (n + 2)
+
∫ b

a
g(x)

(x− b)n+1

(n− 1) · n · (n + 1)
dx
)

.

Remark 1. If function f is (n + 2)−concave, the inequalities in Theorems 5–8 are reversed. This
follows from the fact that for (n + 2)−concave function, we have − f (n+2) ≥ 0. Hence, − f (n) is
convex and we can apply inequality (1) to function − f (n).

Remark 2. The expressions Pi(b) and mi for i = 1, . . . , 4 can also be achieved by the method
introduced in [16]. By this method, we calculate P1(b) and m1. Other expressions can be recaptured
in a similar manner.

The value of P1(b) can be obtained from (3) by taking f (t) = (t−a)n

n! . Then, f (n)(t) = 1.
Thus, we have the following.

P1(b) = −(n− 2)!
(∫ a+λ

a

(x− a)n

n!
dt−

∫ b

a

(x− a)n

n!
g(t)dt

)
= − λn+1

(n− 1) · n · (n + 1)
+
∫ b

a

(x− a)n

(n− 1) · n g(t)dt.

Hence, we obtained expression (9).
From Theorem 1, we previously obtained the following.

m1 =
1

P1(b)

∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
t dt.

To calculate m1, we take function f (t) = (t−a)n+1

(n+1)! . Then, f (n)(t) = t− a. Hence, from the
identity (3), we obtain expression (10).
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3. Conclusions

In this paper, we obtained new weighted Hermite–Hadamard-type inequalities for
higher order convex functions. We used previously obtained identities related to the
generalizations of Steffensen’s inequality. Results obtained in this paper can be considered
as a starting point for some future work.
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