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 Existence of data allows use of solution methods for differential 
equations that would otherwise be inapplicable. The solution 
process for this is formalized by using derivation matrices that 
reduce the time necessary for derivation and solving of differential 
equations. Derivation matrices are formulated by applying 
numerical methods in matrix notation, like finite difference 
schemes. In this work, a novel formulation is developed based on 
Lagrange polynomials with special care taken at boundary points 
in order to persevere a uniform precision. The main advantage of 
the approach is straightforward formulation, clear engineering 
insight into the process and (almost) arbitrary precision through 
choice of the interpolation order. The result of this procedure is the 
derivation matrix of the dimension [n×n], where 'n' is the number 
of data points. The resulting matrix is singular (of rank 'n-1') until 
boundary/initial conditions are introduced. However, that does not 
prevent the user to successfully differentiate its unknown function 
represented with the recorded data points. Derivation matrix 
approach is easily applicable to a wide range of engineering 
problems. This methodology could be extended to dynamic systems 
with multiple degrees of freedom and adapted when velocities or 
accelerations are recorded instead of displacements.  
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1    Introduction  
 

Differential equations have a long history and are widely used in the description of engineering problems. 
They can be solved analytically or numerically; for various reasons, the second approach is much more 
commonly used by engineers [1]. There are many ways to develop a procedure for numerical differentiation, 
which can generally be divided into single-step and multistep methods [2]. There are also explicit (such as 
Euler's forward procedure) and implicit (such as Euler's backward procedure) procedures. Moreover, one can 
distinguish between local formulations, where the derivative at a point depends on the value of some 
neighbouring points (as in finite differences), and global formulations, where the derivative at a point depends 
on the value of all points in a scheme (as in Pade derivatives) [3]. Global schemes require the solution of a 
system of linear equations, which naturally leads to the formulation of the derivative matrix.  

The Pade derivative scheme is global and is formulated using the derivative matrix and achieves 'spectral 
accuracy' (accuracy comparable to analytical solutions) [4]; it is described in [5] where it is used in solving an 
engineering problem in strong formulation. Another global scheme based on the weak formulation and finite 
elements was developed in [6] and applied to the flux calculation in transport differential equations. In this 
paper we present the formulation and use of differentiation matrices based on Lagrange polynomials for the 
solution of simple engineering differential equations. The first advantage of such an approach is simplicity, 
since we use familiar operations of linear algebra to solve a differential equation [3]. The second advantage 
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could be the suitability of the method for data analysis problems, where we collect a large amount of 
(experimental) data that needs further processing [7]. Often the data need to be differenced, which can be easily 
done using the derivative matrix.  

The alternative is to regress the collected data, which introduces an additional error. The proposed method 
has comparable or better accuracy than most single-step methods, but does not have the spectral accuracy 
property. We estimate that the main application could be the computation of derivatives from numerical or 
experimental results, i.e., the computation of the flux from the scalar field (e.g., in temperature problems) and 
the computation of the strain or stress field (or moments) from the computed or measured displacement data. 
Since the solution of the differential equation is now reduced to a linear algebra procedure, the method is also 
suitable for training engineers who are traditionally well trained in linear algebra. Numerical examples 
illustrate the procedure. 
 
2    Formulation of the derivation matrix  
 

However, finite difference scheme is the basic method for the numerical differentiation (see e.g., [2]). One 
way to form the scheme is through polynomial interpolation based on Lagrange polynomials.  

 

 
 

Figure 1. Discretization of the domain. 
 
Suppose that the domain is discretized and labeled according to the image above (Figure 1.) where x are 

the coordinate labels, u are the unknown function values and h is the distance between successive points, i.e. 
constant throughout the whole domain (the indexes are labeled according to the finite difference method, l - 
'left' and r - 'right'). Unknown values are interpolated using Lagrange interpolation polynomials. 

 

2.1. Scheme in the central point 
 

Starting with quadratic interpolation, Lagrange polynomial for values in three points looks: 
 
 pj(x)=ul·Ll(x)+uj·Lj(x)+ur·Lr(x) (1) 

 
In the interpolation equation 'u' are the unknown values of the function in the previously defined points (l, 

j and r) and L(x) are the Lagrange polynomials of the second order for those same points. The derivative wj of 
the interpolation polynomial pj at point xj will give a scheme for the interpolation of the derivation at point xj. 
This method of obtaining an interpolation scheme is not common but has several advantages: it is clear that 
the scheme is not accurate but only interpolates the derivation value, boundary point schemes are easily 
obtained and schemes of higher order of accuracy are easily obtained. The derivative of the interpolation 
polynomial is: 
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 wj(x)=p'j(x) (2) 

   

 
 

p'j(x)=ul·L'l(x)+uj·L'j(x)+ur·L'r(x) (3) 

 
The differentiations of the Lagrange polynomials in points l, j and r are: 

 
 

L'l(x)=
(xj-xr)

2h2  (4) 

 
 

L'j(x)=
(xl-2xj+xr)

h2  (5) 

 
 

L'r(x)=
(xj-xl)

2h2  (6) 

 
Therefore, the differentiation of the polynomial interpolation at point xj is: 

 
 

p'j xj =
ul xj-xr +2uj xl-2xj+xr +ur(xj-xl)

2h2  (7) 

 
 

wj xj =
-ul+ur

2h
 (8) 

 
The expression (8) represents the differentiation scheme in the central point with the 2nd order of accuracy 
according to the finite difference method. 

 
2.2. Linear scheme at boundary points 

 

The differentiation scheme at the boundary points should satisfy the boundary conditions. It is obtained by 
calculating Lagrange polynomials at those point, instead of that at the central point. However, if boundary 
points were to be calculated using the same scheme as before, only two points would end up being included in 
the interpolation – the observed point and the first neighbouring point. This would result with a differentiation 
of the 1st order of accuracy and would stray from the rest of the domain which is of the 2nd order of accuracy. 
This is improved by correcting the original expression for the parabola and include Lagrange polynomials for 
three adjacent points on the same side. 
 
The polynomial interpolation when xj is on the left boundary is: 
 
 pl(x)=uj·Lj(x)+ur·Lr(x)+ur2·Lr2(x) (9) 

 
and the differentiations of the Lagrange polynomials are now: 
 
 

L'j xj =
(2xj-xr-xr2)

2h2  (10) 
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L'r xj =

(xj-xr2)

-h2  (11) 

 

 
L'r2 xj =

(xj-xr)

2h2  (12) 

 
The differentiation scheme at the left boundary point is: 
 
 

wj xj =
uj(-3h)-2ur(-2h)+ur2(h)

2h2  (13) 

 
For the right boundary by analogy (with xj being xn): 
 
 

wj(xn)=
-3un+4un-1-un-2

2h
 (14) 

 
Now three points participate in the calculation of the boundary derivative and the accuracy is of 
the 2nd order. 

 
The derivation matrix is formed according to previously obtained schemes. For a 2nd order accuracy 

derivation matrix schemes are obtained for the points on the left and right boundaries and for all other points.  
 
 

M=
1

2h

⎣
⎢
⎢
⎢
⎡
-3 4 -1 … 0 0 0
-1 0 1 … 0 0 0
… … … … … … …
0 0 0 … -1 0 1
0 0 0 … 1 -4 3 ⎦

⎥
⎥
⎥
⎤

 (15) 

 
The derivation matrix allows us to convert the entire vector of value points of a function into a vector of 
derivatives of that function, 
 
 w=M·p (16) 

 
where w is the vector of points with derivation values, M is the derivation matrix and p is the vector of points 
containing the values of the function. An expanded derivation matrix for five point interpolation is obtained 
using the same procedure and is of the 4th order of accuracy:  

   
 

M=
1

12h

⎣
⎢
⎢
⎢
⎢
⎢
⎡
-25 48 -36 16 -3
-3 -10 18 -6 1
1 -8 0 8 -1

⋯
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⋮ ⋱ ⋮
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⋯
1 -8 0 8 -1
-1 6 -18 10 3
3 -16 36 -48 25⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (17) 

 
2.3. An example of using the derivation matrix 
 

Using derivation matrix, the derivative of the function  
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 𝑦=√x·esin(x) (18) 

 
is calculated both analytically and numerically. The observed interval (from 0.5 to 9.5) is divided in desired 
number of points and the impact of point distribution on the accuracy of interpolation will be observed. Firstly, 
the values of the function and the values of the analytical derivative in all points are obtained. The next step is 
to construct a derivation matrix M for the observed number of points. The derivation matrix has the same 
number of rows and columns. The values of numerical differentiation are obtained by multiplying the 
derivation matrix with the vector containing values of the function.  
 

     
 

Figure 2. Results of numerical and analytical differentiation (2nd order of accuracy).  
 

            
 

Figure 3. Results of numerical and analytical differentiation (4th order of accuracy).  
 

The blue line in Figures 2. and 3. represents analytical (exact) differentiation i.e. values obtained by 
differentiating the function and the red line represents numerical differentiation that is obtained by multiplying 
the derivation matrix with the vector containing the values of the function. In this example the interval was 
divided into 10, 19 and 37 points. The biggest errors were observed on the boundaries and a higher level of 
interpolation should be used for those boundary points. It is concluded that the division of the interval into 37 
points is satisfactory. 
 
3     Examples 

 

3.1. Solving a differential equation using derivation matrix 
 

Solving a differential equation in the domain of numerical mathematics means calculating the values of 
the function in discrete points using known values of the derivatives in those same points. When the values of 
the derivatives are known and presented as a vector of value points w it is sufficient to invert the derivation 
matrix M and the original function vector should be obtained. This way expression (16) becomes the expression 
(19) and the same steps as in the previous example are applied. 

 
 p=M-1·w (19) 

 
Multiplying the values of the derivatives with the inverse of the matrix M results in values of the function in 
selected points. However, the derivation matrix is singular and its inverse is not defined. Therefore, in order 
to calculate the differential equation of the first order, function value in at least one point must be known. 
Usually those values are on the boundaries and when those are embedded in the matrix M, it is no longer 
singular and the calculation can be computed.  
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Figure 4. Results of solving a differential equation using derivation matrix (2nd order of accuracy). 
 

          
 

Figure 5. Results of solving a differential equation using derivation matrix (4th order of accuracy). 
 

The blue line in Figures 4 and 5 represent analytically exact solution to the differential equation and the 
red line represents the numerical solution obtained by including the boundary condition in the vector of 
derived values and multiplying the inverse of the derivation matrix with the vector of derived values. A 
better insight into the size of the error can be observed if the calculated values and the exact values are 
compared numerically (application of the correlation procedure is not suitable here). The error is obtained as 
a relative dimension (20), where X is a list of calculated results and Y is a list of exact values, and is shown in 
Figures 6 and 7 (note different scales for the error magnitude). 

 
 

Δp%=
X

Y
-1 ∙100 (20) 

 

 
 

Figure 6. Calculation error (2nd order of accuracy). 

 

 
 

Figure 7. Calculation error (4th order of accuracy). 
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3.2. Calculation of moments from beam displacements 
 

Beams are probably the most common engineering structure defined with a differential equation relating 
beam displacements and loads. To solve the beam problem, you must determine the displacements for a 
given geometry and load. However, the displacements can also be obtained from measurements. 
Determining the stresses in the beam is equivalent to calculating the bending moments, i.e. the second 
derivative of the displacements. 

In this example, we calculate bending moments from given (i.e., measured) displacements of a statically 
determinate beam with linear change in height. Note: Statically determinate beams with constant height and 
variable height have different displacements but equal moments, so the calculation is more challenging, but 
the result check is simple. 

 

 
 

Figure 8. Beam geometry. 
 

We assume a linear change in height, leading to EI(x)=EI0-ΔEIx for the moment of inertia. The analytical 
solution for displacements and moments is [8] 

 
 

y(x)=
1

4b3 -cx-b2LP0x+b2P0x2+2a2P0Log(a)-cLog(a-b
L

2
)-2a2P0Log(a-bx)+cLog(a-bx)  (21) 

 

 M(x)=(a-bx)y''(x) (22) 

 
with a=EI0 , b=(EI0-EI1)x/2L and c=2abP0x. 
 
The second derivative is obtained simply by applying Eq.(16) twice, i.e., we multiply the data vector by the 
square of the derivative matrix. 
Note: Although the analytical expression for the moments contains an additional term besides the second 
derivative of the displacements, it is sufficient to differentiate the displacement data numerically, since they 
already contain the necessary inertia terms, i.e. one does not need to know the geometrical data of the beam 
to calculate the bending moments numerically. 

 

 
 

Figure 9. (a) displacements, (b) bending moments. 
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From Figure 9 it can be seen that the classical finite differences are not suitable for the post-processing of the 
experimental data and that the derivative matrix from Eq.(17) gives almost identical results to the analytical 
solution. 

 

4   Conclusion 
 

The formation and use of the derivative matrix to calculate unknown function values was presented. If the 
function values at discrete points are known, the derivative matrix can be used to obtain the function derivatives 
at the same points. In the same way, a derivative matrix can solve numerical differential equations, but only 
with defined and known boundary conditions. However, the main application is the derivation of recorded 
(experimental) data when we do not have a functional representation of the displacements. For practical use, 
it is recommended to divide the interval into a number of evenly spaced points. It is also recommended to 
repeat the calculation with at least two different subdivisions. In this way, the influence of the interval size can 
be estimated by comparing the two results. It is even possible to improve the accuracy by applying Richardson 
extrapolation [9]. 

Computational results for example problems were obtained for three interval divisions (10, 19, and 37 
points) and using a 2nd order derivative matrix and a 4th order derivative matrix. It is concluded that setting a 
larger interval division and using a derivative matrix based on an interpolation scheme involving a higher 
number of points gives more accurate results. The second example illustrates the applicability of the method 
in post-processing experimental data and is recommended as a substitute for the commonly used finite 
differences. The introduction of the derivative matrix reduces the differentiation procedure to one of linear 
algebra, making the method suitable for training engineers who are traditionally well trained in linear algebra. 
However, the degree of interpolation and discretization of the domain should be optimised for each given 
problem. 
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