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Abstract

This thesis investigates the influence of specimen width on the mode-I fracture toughness

of adhesively bonded plate-like specimens. First, the influence of different double cantilever

beam (DCB) loading arrangements on the measured fracture toughness is investigated and an

accurate method for determination of the traction-separation law of the interface using the

direct approach with the digital image correlation (DIC) is presented. An additional set of DCB

experiments with three different specimen widths is conducted to study the influence of the width

on the measured fracture toughness. A novel technique for measuring the relative displacement

of the plates with full-field DIC, termed Symmetry Based Top Surface Analysis (SBTSA), is

developed to measure the actual crack position and shape, as well as the crack area increments.

By using this value in the finite-difference form of the definition of critical energy release rate

(Area method) any dependence on the beam theory assumptions is avoided. Experimental results

suggest that wider specimens have substantially higher fracture toughness. An original numerical

model was developed using the Q4U3 plate elements connected by the kinematically compatible

interface elements with an embedded exponential traction-separation law. A numerical study

of the efficiency and robustness indicates good convergence properties of the proposed model.

The aforementioned approach to compute the fracture toughness using SBTSA and the Area

method was validated by means of virtual experiments. The comparison of experimental and

numerical results for DCB specimens with different widths shows good agreement of the global

load-displacement response, with an excellent agreement of the crack front shape and size of the

damage process zone.

Keywords: adhesive joints, delamination, cohesive zone model, digital image correlation, finite

element method, plate structures





Sažetak

Doktorski rad istražuje utjecaj širine uzorka na lomnu otpornost lijepljenih slojevitih plošnih

nosača. Za početak se preispituje utjecaj različitih prihvata testa dvostruke konzole na izračun

lomne otpornosti te se predstavlja precizna metoda određivanja konstitutivnog zakona ljepila di-

rektnim pristupom uz tehniku korelacije digitalne slike kako bi se odredili materijalni parametri

međusloja (eng. interface). U sljedećem setu eksperimenata s tri različite širine na testu

dvostruke konzole se ispituje isključivo utjecaj širine uzorka na lomnu otpornost. Originalna

tehnika mjerenja relativnih pomaka ploča duž kontinuirane 2D domene pod nazivom SBTSA

(eng. Symmetry Based Top Surface Analysis) je razvijena kako bi se mjerila stvarna pozicija i

oblik pukotine te inkrementi površine pukotine. Koristeći tako određenu vrijednost inkrementa

za definiciju kritične promjene oslobođene energije u formi konačnih razlika (metoda površine) se

nigdje ne usvaja pretpostavka gredne teorije. Eksperimentalni rezultati ukazuju da uzorci plošne

geometrije imaju značajno veću lomnu žilavost. Originalan numerički model je razvijen koris-

teći Q4U3 konačne elemente ploče koji su spojeni pomoću kinematički kompatibilnog elementa

međusloja s izvedenim eksponencijalnim konstitutivnim zakonom. Numerička studija efikasnosti

i robusnosti ukazuje na dobra konvergencijska svojstva predloženoga modela. Ranije navedeni

pristup izračuna lomne žilavosti pomoću SBTSA metode i metode površine je validiran na vir-

tualnim eksperimentima pomoću numeričkog modela. Usporedba eksperimentalnih i numeričkih

rezultata pokazuje dobro poklapanje sila-pomak krivulje uz odlično poklapanje oblika pukotine

i veličine plastične zone.

Ključne riječi: lijepljeni spojevi, delaminacija, model kohezivne zone, korelacija digitalne slike,

metoda konačnih elemenata, plošni nosači





Nomenclature

Abbrevations

# number

A30 30 mm wide aluminium specimens

A60 60 mm wide aluminium specimens

A120 120 mm wide aluminium specimens

A240 240 mm wide aluminium specimens

AM area method

BL bilinear (law)

BSG Bosch-Schreurs-Geers (model)

CBT corrected beam theory

CT compact tension (test)

CZM cohesive zone model

DCB double cantilever beam

DIC digital image correlation

DPZ damage process zone

ECM experimental compliance method

EF exponential fit

EPFM elasto-plastic fracture mechanics

Err. error

ESBT enhanced simple beam theory

Eq. equation

EXP exponential law

FE finite element

FEM finite element method



FRP fibre-reinforced plastic

INT8 eight-node interface element

LEFM linear-elastic fracture mechanics

N/A not available

NL nonlinear(ity)

R-curve resistance curve

ROI region of interest

SBT simple beam theory

SBTSA symmetry based top surface analysis

SG Savizky-Golay (filter)

SNB single cantilever beam

TSA top surface analysis

TSL traction-separation law

S-N strength vs number of cycles

TTM tensile-testing machine

Math Symbols

A area (of propagated crack)

a crack length

aEQ equivalent crack length

B width

D plate bending rigidity

δ interface separation

δINIT interface separation at initial crack

δ0 characteristic length

δC critical interface separation

δI interface separation in mode-I

∆t pseudo-time increment

∆l elongation

ϵ deformation

ET total energy

e Euler’s number (2.718)



E modulus of elasticity (of substrate)

EA modulus of elasticity of adhesive

E′
A effective modulus of elasticity of adhesive

G shear modulus

GI energy release rate in mode I

GIC critical energy release rate in mode I

h substrate height

I moment of inertia

JINT J integral

JIC critical value of J integral in mode I

k shear correction coefficient

K penalty stiffness

KS softening penalty stiffness

K0 initial penalty stiffness

KI stress intensity factor (in mode-I)

L substrate length

ry plastic zone radius (first order approximation)

Lx FE length along the x direction

Ly FE length along the y direction

lDPZ cohesive zone length

θ cross-sectional rotation at load line

M applied moment

ν Poisson’s ratio

P force

tA adhesive layer thickness

σ stress

σMAX maximum traction

V internal virtual work

W work required to create new surfaces

η natural coordinate axis

ξ natural coordinate axis

ω transversal plate deflection

π the potential energy
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Chapter 1

Introduction

Historically, the first written account of adhesive application is the Greek myth of Daedalus who

constructed wings from feathers glued by wax. Until the 20th century, most of the structural

adhesives were of natural origin, while the testing methods were limited to breaking a sample by

hand. Adhesive joints are nowadays applied in a variety of engineering structures, primarily in

the automotive and aerospace industries. They reduce the stress concentration since, in contrast

to traditional mechanical joints (e.g. bolted joints), no weakening of structural components is

required.

There are many structural adhesive types available for various purposes as an alternative to

traditional mechanical fasteners. Epoxy structural adhesives have versatility such as thermal

and chemical resistance, making them a common choice in automotive and aerospace applica-

tions. They can also be used solely for void-filling to enhance rigidity and reduce noise (noise

and vibration sealants) in applications like turbine blade manufacture. Acrylic adhesives are

applied to a variety of surfaces (substrates), including plastics and oily metals, since they do not

require surface preparation. Polyurethane adhesives are typically lower-cost but also offer other

advantages like high impact resistance and high humidity resistance. Although their stiffness

is relatively low, this feature can be well suited for applications where flexibility is needed, e.g.

bond between dissimilar materials.

The following five paragraphs are dedicated to applications of adhesives in various industries

[1].

In aerospace engineering, adhesive bonding is typically used for fuselage and wings. Chal-

lenges arise due to surface treatment prior to bonding, which depends on the type of aluminium

substrate. In terms of efficiency, there is still room for improvement since thin-wall panels are

1
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designed only up to buckling load even though stiffeners prevent the occurrence of buckling.

This is to prevent large out-of-plane deformations that may also cause debonding of stiffeners or

delamination of composite structure. Moreover, despite the effort made to improve the predic-

tive capabilities of modelling, additional mechanical fasteners are usually included for safety and

this component is then tested, instead of modelled, before use. Testing must also account for

durability requirements. Requirements in terms of joint flexibility (stiffness) are two-fold, joint

strength is desirable but ductile adhesives may actually lead to better performance by spreading

loads over larger areas.

In the automotive industry, adhesive joints are used to reduce weight and decrease fuel

consumption. Primary load case is road accident simulation where passenger safety is paramount,

making impact resistance a primary requirement. In addition, materials are exposed to varying

humidity and temperature. A typical automotive application is the mounting of glass windshield.

In fact, in the experiments presented in the present thesis, epoxy adhesive that is manufactured

for bonding auto panels made from metals or composite materials is used. Typically, joints are

exposed to shear loads. Given that the anti-corrosion coatings are applied prior to structural

adhesives, surface preparation of substrate has a significant influence on the bond strength.

Hybrid adhesive bonding is a combination of adhesive bonds with spot welds and mechanical

fastening. This technique has recently started being used at the automotive bodyshell assembly

lines.

In civil engineering applications, composites are mainly used to strengthen existing structures

by bonding fibre-reinforced plastic (FRP) to the surface. In order to better match the stiffness

of the joined structures, masonry or timber structures are typically repaired by lower stiffness

FRP, while concrete is strengthened by higher stiffness FRP. Some attempts were made using

FRP shells or profiles for new structures such as bridges.

In wind energy applications, rotor wind blades are assembled using thick layers of adhesives.

Due to confidentiality issues of manufacturers, reports of failure causes are lacking but it is

generally accepted that adhesive joints may be a leading contributor. Thickness of the adhesive

can be up to 30 mm to compensate for manufacturing tolerances, but voids can still be found upon

inspection. Composite layers can be made from glass fibre or carbon fibre fabrics that behave

well in fatigue and corrosion scenarios. Fatique analysis of a wind blade is usually based on

the experimental S-N data (Strength vs. No. of cycles). Advanced approaches use elasto-visco-

plastic models [2] that should also account for additional mechanisms such as creep, influence of



3

loading rate and ageing.

In electronics [3,4], semiconductor devices and integrated circuits are bonded to various sur-

faces and interfaces. Bonding with adhesives is increasingly replacing the traditional methods

of joining by soldering. In some cases, such as robotics, the applications may demand reduced

instead of increased adhesion, particularly the on-demand switch between the two [5]. Further-

more, the property of reduced adhesion could potentially lead to increased recycling of electronics

which typically have quite a short service life. In most applications electrical conductivity is a

requirement. In terms of structural loads, adhesives are exposed primarily to thermal cyclical

stresses. Failures typically arise due to debonding or delamination. This often results in un-

desirable moisture penetration and, consequently, in damage from corrosion or even in short

circuits.

One of the most severe failure modes of adhesive joints is debonding, which occurs when

the connection between the joined parts is lost. The two common failure modes in adhesive

debonding are cohesive failure, in which the adhesive material is broken, and interfacial failure,

in which the adhesion between the adhesive layer and the substrate is lost prior to cohesive

failure. In this thesis, adhesive debonding is referred to only in terms of the cohesive failure,

as the contribution of interfacial failure becomes negligible in case of adequate preparation of

bonding surfaces [6]. Cohesive failure of the adhesive layer is usually studied in the framework

of fracture mechanics.

Fracture mechanics is a field of mechanics that deals with the propagation of cracks in ma-

terials [7]. It is divided into the discipline of linear elastic fracture mechanics (LEFM) and

elasto-plastic fracture mechanics (EPFM). While the former assumes an infinite stress near the

tip of a sharp crack, the latter is a more realistic approach with material near a crack yielding

when the stress reaches yield strength thus forming a plastic zone. Defects in adhesive joints,

such as air entrapment, are introduced through the manufacturing process [1]. Throughout ser-

vice life, structural loads may cause propagation of initial crack originating from manufacturing

defects in the material. Damage tolerance design philosophy [7] allows the presence of "safe"

existing defects that do not propagate further, i.e. damage initiation is allowed but damage

propagation is not.

Crack can propagate in three modes [7]. The opening mode (mode I) is usually the most

critical load case. Therefore, adhesive joints are typically designed to carry primarily the load

in mode II and mode III [1], which represent sliding and scissoring (tearing) shear, respectively,
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although a combination of two or more delamination modes, called mixed-mode delamination,

is very frequent. Mode I delamination may still dominantly occur during buckling or bending of

curved composite structures such as polymer-coated metals. In this thesis focus will be exclusively

on mode I (opening) delamination.

Testing of adhesive joint and identification of material properties is necessary prior to struc-

tural design and subsequent application in different fields of engineering since mechanical prop-

erties must be well known to properly design any structural component. Adhesive resistance to

debonding, or delamination in the case of composites, essentially represents the change in the

total potential energy of the system during crack propagation. The most common parameter

to describe the fracture resistance of adhesives is the critical energy release rate (Gc), which is

derived within the framework of LEFM [3]. By applying LEFM to adhesive joints, it is assumed

that the adhesive is infinitely stiff and perfectly brittle, while the remaining part of the structure

(adherends) is linear-elastic. Such assumptions lead to a stress singularity at the crack tip, which

is clearly not realistic. For adhesives, which are essentially polymers, not only are stresses at the

crack tip finite, but a region is developed ahead of the crack tip, where the energy is dissipated

before propagating the crack. This region is called the plastic zone or the damage process zone

(DPZ) [7].

Double cantilever beam (DCB) is the most common test specimen for determining fracture

resistance in mode I and it is used in standards [8–10]. In these standards, the critical energy

release rate is exclusively used to characterise the fracture resistance of adhesives. By applying

corrections based on the measured compliance, LEFM theory can be used to accurately assess

the fracture resistance of not only brittle, but also ductile adhesives [11].

DCB test specimens are manufactured by glueing together two equal adherends/arms in

order to later expose them to a symmetric opening load. An initial crack is introduced by

inserting a thin film, e.g. aluminium foil, in an otherwise glued interface and pulling the specimen

apart causes crack propagation along the bonded surface. Crack propagation increases the DCB

cantilever span which makes this problem nonlinear (nonlinear relationship of the prescribed

opening displacement and applied load).

British standard for mode-I delamination/debonding [8] accounts for the following loading

arrangements (also known as load introduction systems): loading holes, load-blocks, and piano

hinges (more details are given in Section 3.2 of this thesis). The main difference between these

loading arrangements is the way the load is transferred to the specimen. In fact, the basic closed-
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form expressions for the critical energy release rate assume that the load-line displacement is twice

the deflection of each DCB arm at the point of application of the load. Moreover, it is assumed

that the load is applied on each DCB arm directly on their reference axes. The distance from the

point of application of the load to the crack tip represents the crack length. Such conditions are

representative only for the loading arrangement with loading holes and pins. However, DCB arms

are often too thin to be drilled across the width (which is the case for thin composite specimens),

and alternative loading arrangements, such as loading blocks and piano hinges, must be used.

In addition to these three types of loading arrangements, other loading arrangements have been

proposed in the literature [12,13], but are not considered in this thesis for the sake of simplicity.

Testing procedure typically requires the continuous monitoring of the force-displacement

response from the tensile-testing machine (TTM) and visual measurement of the crack length

along the specimen’s edge, which has been traditionally done by means of a travelling microscope

or video cameras [8,9]. This procedure may be inconvenient and prone to human error. To avoid

this, an additional optical measuring equipment is used in this thesis, namely the digital image

correlation (DIC) technique [14] that has become commonplace in laboratories for experimental

mechanics.

Regarding the DIC usage in the adhesive joints testing, Gorman and Thouless [15] recently

presented procedures for measuring the cross-sectional rotation, initial crack tip separation and

cohesive zone length in DCB tests by applying full-field DIC capabilities. DIC can be utilized for

crack detection [16,17] in mode-I delamination problems [18]. Sun and Blackman [19] showed the

importance of crack length measurement in procedure from the British standard. They proposed

measuring the crack tip at a position where the relative separation between the substrates has

a maximum negative value which occurs when the interface is in compression. At this position,

there is an extreme (minimum) of the deflection of the upper substrate, which, according to Euler-

Bernoulli beam theory, corresponds to the position where the angle of cross-sectional rotation

is zero. Rather than the measured crack tip, this position could act as a much more accurate

clamping point for the DCB arms, since a very common assumption in LEFM-based methods [20]

is that each DCB arm acts like a (fully clamped) cantilever beam. Same authors [19] also

confirmed [21] that the critical crack tip opening can be determined by reading the opening

along length at which the crack in the observed image propagates.

Measurements from the DCB experiment are the input data required to compute the fracture

toughness of the adhesive using methods from the testing standards known as data-reduction
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schemes [8]. For example, Berry [22] derived a simple data reduction scheme called ’experimental

compliance method’ (ECM) that instead of typical cubic dependence of deflection on the crack

length assumes a polynomial function of an arbitrary degree. This is particularly suitable in

cases when the experimental measurement of compliance is not consistent with the beam theory.

Ripling et al. [23] first presented the ’simple beam theory’ (SBT) under the assumption that the

interface material is perfectly stiff and brittle. After having noticed that the SBT assumptions

underestimated the real deflections, they added a correction that increases the measured crack

length and called this approach the ’corrected beam theory’ (CBT). Hashemi et al [24] presented

the load-block correction on the measured displacement, as well as large displacement correction

[25]. They also provided a useful expression for the flexural modulus of substrates. Anderson

and Stigh [26] introduced the concept of equivalent crack length and assessed the accuracy of

commonly used data-reduction schemes. Škec and Alfano [20] used the equivalent crack length

to derive so-called ’enhanced simple beam theory’ (ESBT) that does not require crack length

measurements and takes into account the arm rotation at the crack tip due to shear.

Alternative theories to LEFM, such as J integral [27] and cohesive-zone models (CZM) [28,29],

are capable of taking into account the non-linear material behaviour that occurs in front of the

crack tip during debonding of adhesive joints. In particular, the J integral can be used to compute

the so-called non-linear energy release rate [7] and its change before and during crack propagation,

while CZMs are nowadays widely used in the framework of the finite-element analysis to model

debonding, delamination and crack propagation in general [30–32]. In contrast to the limit load

analysis, the approach with CZM enables inelastic behaviour and a gradual reduction in load-

carrying capabilities. By using the J-integral approach, one can experimentally determine the

traction-separation law (TSL) from the DCB experiment [15]. Retrieved material properties are

typically used in numerical simulations for comparison with experiments.

The procedure of direct identification of the TSL was made possible by Olsson and Stigh [33]

who derived the DCB solution for the J-integral as a simple function of force and load-line

rotation. Sorensen et al. [34] implemented direct identification of the TSL on DCB specimen

loaded with moments by measuring the crack tip opening with extensometer. Catalanotti [35]

managed to directly measure the J-integral from the experiment rigorously, using measurement

of the displacement and strain fields, as defined originally by Cherepanov [36] and Rice [27]

independently. Shen and Paulino [37] were the first to show how the material properties of the

interface can be directly identified with the use of DIC. Sarrado et al. [38] studied the effect of
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adhesive thickness on its cohesive zone model parameters, both in modes I, II and a combination

of the two. In essence, thicker adhesive seemed more ductile but they concluded that this effect

seems insignificant since its magnitude is almost comparable to experimental noise. Joki et

al. [39] underlined a serious difficulty with measuring TSL by the J-integral approach for small

openings since, due to anticlastic bending and stress state variation across the specimen width,

they can be reduced or even become negative. Clearly, a way around this could be to somehow

measure openings across the width. Heshmati et al. [40] studied the influence of moisture and

freeze-thaw cycling on cohesive law obtained by direct identification.

There are alternative methods of the TSL identification which rely on inverse analysis or

on analytical/empirical methods. Škec derived a three-phase analytical solution to extract TSL

parameters [41]. Monsef et. al. [42] developed an indirect method to extract the TSL parameters

using only the force-displacement data. Recently Huo et al. [43] studied separation along the

interface in detail to extract the TSL parameters via semi-empirical approach.

Adams [44] explained how the retrieved elastic properties are useful in both bulk and thin

layer configurations, while the same may not be true for strength parameters. In any case, there

was controversy [45] as to whether the tested mechanical properties of the bulk material are

representative of the thin layer adhesive. In this thesis, elastic properties will be assumed as

independent of the geometry/constraint.

A mathematical description of a real-world problem that can be solved using computational

methods will be referred here as a numerical model. Finite element method (FEM) [46, 47] is

a discrete numerical approach that can convert a continuous mechanical problem into a set of

mathematical equations, e.g. a set of partial differential equations. The FEM can approximate a

solution via variational calculus by minimizing the potential energy of a mechanical system. The

physical domain of a problem is encircled by a boundary for which a solution (or its derivative)

must be known in advance, i.e. boundary conditions must be defined. In every element we assume

the form of the solution across its domain by interpolating between the nodal values. Finding an

adequate interpolation, i.e. a function that closely resembles the exact solution, eventually leads

to fewer elements required for an accurate simulation and in turn lower computational cost. The

division of model into parts (finite elements) is called mesh generation. Better approximation

is achieved with more elements, i.e. denser mesh. However, dense meshes are computationally

demanding mostly in terms of RAM, while the complex interpolation functions are typically

CPU intensive. Technological advancement in computational capabilities has paved the way for
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FEM to become a dominant approach in solving various engineering problems.

Substrates (arms) of the DCB can be described effectively by either a beam or a plate model.

Beam is a load bearing structural element with one dimension significantly larger than the other

two, while the plate model has one dimension significantly smaller than the other two. As a

general rule, if the ratio of these two dimension is larger than 2, then a simple beam model

is appropriate for use. Fundamental beam theories are known as the Euler-Bernoulli theory

and Timoshenko beam theory. The principal difference is that the latter accounts for shear

deformation, which is essentially the difference between the slope of the beam’s axis and the

actual rotation of the cross section. Likewise, plate theory equivalents are the Kirchhoff and

Mindlin plate theory, with the latter accounting for shear deformation in two dimensions. When

modelling the DCB test, in which only the relative nodal transversal displacements in mode-I

are considered, membrane degrees of freedom contained in the shell finite element are redundant.

Therefore, in numerical simulations presented in this thesis, DCB plates were modelled using

plate finite elements. Many researchers even resort to 3D solid ("brick") elements for which all

three dimensions have the same order of magnitude. This is made possible due to an increase

in computational power since this approach requires a significantly higher number of degrees of

freedom, i.e. number of equations to be solved.

Typically the beam theory is utilised for the DCB problem, although this is mainly due to the

simplicity stemming from a well-known closed-form solutions. Besides, the geometry of a DCB

test is typically beam-like, rather than plate-like. In this thesis, the plate theory will be used

to model the substrates of DCB specimens of varying width. This is appropriate not only for

plate-like geometries, but also for beam-like specimens since the free arm can be better described

by plates when the crack is short.

Quadrilateral (4-noded) plate elements are an adequate choice for describing the DCB arms

due to their simple rectangular geometry. Considering that the deflection curve of a cantilever

beam (DCB) can be exactly defined by a cubic polynomial, the desired interpolation function is

of cubic order. These requirements are effortlessly satisfied by the chosen finite element Q4U3

presented in [48], which has a displacement-based linked interpolation.

Numerical simulation of the delamination can be performed in two ways. The first one is

to directly apply fracture mechanics [7], e.g. virtual crack extension or virtual crack closure

technique, while the second approach uses the framework of finite element analysis with either

damage mechanics or softening plasticity [30]. LEFM provides methods that are quite effective
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in predicting the delamination growth of a crack. When modelling crack propagation, the basic

assumption is that delamination propagates when the energy release rate is greater than the

critical value that is a material parameter of the interface. However, LEFM methods cannot be

applied to predict the initiation of delamination, limiting them to problems in which the initial

position of the crack is known beforehand. To overcome this, strategies have been developed to

model the interface based on damage mechanics or softening plasticity, which is often referred

to as cohesive zone modelling (equivalent to the aforementioned CZM).

The cohesive zone model (CZM) was introduced by Dugdale and Barenblatt [28] in the early

1960s. It is a useful tool that enables the use of fracture mechanics parameters (energy-based

approach) in finite element models. Constitutive behaviour of material exhibits nonlinearity

that requires an iterative solver (e.g. Newton-Raphson method) and definition of the so-called

traction-separation law (TSL).

Alfano [49] studied the influence of different TSL shapes on convergence properties of DCB

simulation to find the two-part exponential law most precise and the bilinear law the most

efficient one. All this was performed for reversible TSL that does not account for damage in

case of reloading but only for softening plasticity. Instead of a two-part exponential law, the

exponential law is typically defined by a single expression as derived originally in the early 90s

by Needleman and Xu [31, 50]. This law can be used for mixed-mode loads, as well as mode-I

loading, which is relevant to this thesis. Nowadays, this exponential law can also be found in

literature as BSG (Bosch-Schreurs-Geers) model [32] which is slightly modified to have a more

realistic coupling behaviour in a sense that the mode II friction does not increase the mode I

toughness. It is interesting to note that the research in the early 80s [51] suggested that the

binding energy of bi-metallic interfaces is well described by the exponential expression. This was

studied for purely normal separation by means of atomistic calculation from molecular dynamics.

Reedy et al. [52] used springs to describe the interface and shells to describe the DCB arms in

a numerical model for a composite delamination. Davila [53] modelled the relative displacements

at the interface by taking into account the rotation that kinematically corresponds to the plate

degrees of freedom. Russo and Chen [54] derived a numerical model with a corotational formu-

lation for geometrically nonlinear analysis with slender elements for composite plies, along with

the higher-order integration. They were able to model delamination with elements that are much

larger than the cohesive zone length. Assuming the feasibility of the proposed method, this is

significant progress since mesh size requirements were typically very computationally prohibitive
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limiting the simulation to laboratory-size coupons. They also indicated that the approach to

reduce computation requirements by artificially increasing ductility [55] is considerably impre-

cise in case of a double delamination problem [56]. In addition to this, they provided future

work guidelines to include substrate shear deformation to overcome the oscillations in deflection

behind the crack tip.

Following the trends in the last couple of decades [7], this thesis aims to characterize and

predict the geometry dependence of adhesive’s fracture toughness. These efforts are necessary

when traditional single-parameter fracture mechanics is inadequate to describe the real behaviour

of materials, including the adhesive joints and composites. The laboratory test results may not

be transferable to complex geometries and this presents an obstacle to an accurate and safe

design of real structures.

The influences of geometry that are relevant to this thesis were first qualitatively explained

by Kinloch and Shaw’s [57] in the early 1980s. They found that the measured bond toughness

is reduced when the bond thickness does not allow the plastic zone to fully develop due to the

restrictions imposed by the substrates. In addition, a correlation of thicker bonds with unstable

crack propagation known as the stick-slip fracture was noticed. More importantly for the present

work, increase in width was correlated with increased fracture toughness. This phenomenon is

one of the principal subjects of this thesis so the next few paragraphs are dedicated to additional

theoretical background on this matter.

Geometrical influences on the adhesive’s fracture toughness can be formally divided into two

categories [58], namely the external and internal constraint effects. The former represents effects

outside of the thin adhesive layer, such as substrate arm thickness [59] or state of deformation in

general. The latter represents effects within the thin adhesive layer that can affect the size and

shape of the plastic zone, primarily the thickness and the width of the adhesive layer.

Note how the terms geometry dependence or constraint effects [58] are used here interchange-

ably. Actually, the term crack-tip (stress) triaxiality [7] is also occasionally used, as well as the

plane stress - plane strain transition [7]. Higher stress triaxiality occurs in the interior of the

plate where the plane strain conditions are dominant. On the other hand, lower stress triaxiality

occurs at the edges where the plane stress conditions are dominant. In short, the degree of stress

triaxiality depends on the magnitude of the stress acting at the crack tip in the direction of

crack propagation in the case of mode-I. This stress component is called T-stress [7,60]. Positive

T-stress increases the size of the plastic zone and makes the crack path unstable, while negative
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T-stress causes the opposite. Gupta [61] made a detailed literature review about the T-stress in

adhesives. Imanaka [62] defined the stress triaxiality parameter S as a ratio of Von Mises stresses

and mean stresses. He found this parameter to be 1/3 for the bulk material and 2 for the thin

layer material acting as a bond, with higher value of this parameter corresponding with higher

maximum principal stress, especially for the case of epoxy adhesives.

Davidson and Schapery [63] studied the effect of the finite width of a composite structure

on the energy release rate which can overestimate it by apparent ca. 30-40 percent. Depending

on the considered plate’s aspect ratio, they also provided finite width correction factors for use

with the energy release rate for plane stress conditions. Furthermore, they theorised that area

method with true surface crack area extension should be used in order to account for the changing

crack curvature. This approach is adopted in the present thesis instead of the aforementioned

data-reduction schemes that assume a straight crack front orthogonal to the longitudinal axis.

Jumel et al. [64] developed a beam on elastic foundation model that takes into account

the anticlastic curvature. Furthermore, they stressed how the crack front curvature can have a

considerable effect on the energy release rate. This was also previously investigated by Davidson

et al. [65] who demonstrated how the error in the energy release rate may reach up to 40 percent

for small crack length versus beam width ratio. Budzik et al. [66] studied the crack front curvature

in bonded joints, namely the single cantilever beam (SNB) and DCB joints, to numerically find

the causes of curvature to be anticlastic bending and stress heterogeneity in the bondline. They

also found that the specimen edges, ca. 0.6 mm wide strips, endure mode II and III in addition

to the mode I, which they experimentally confirmed by observing the so-called river patterns

under a microscope. Furthermore, they expressed the curvature of the crack front using a simple

real-exponent polynomial expression so that their model can account for curved crack front with

the use of curved shell finite elements. This model predicts lower energy release due to crack

curvature effect.

Even though the primary intention of CZM is to simulate damage propagation at a low

numerical cost, as one would expect the elastic behaviour of a joint can also be successfully

simulated. Hesebeck [67] focused on the improvement of the CZM model elastic behaviour by

considering the capability of the lateral contraction using Tsai’s [68] closed form solution for

the rectangular layers between rigid boundaries. Aside from lateral contraction, this model

analogously accounts for mid-section higher apparent stiffness stemming from the prevention of

lateral contraction in plane strain conditions. For academic purposes at least, Hesebeck [67]
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recommended modelling spatially varying stiffness based on the distance from the free surface.

The present thesis is a good candidate to test this. However, a good agreement was achieved

using the usual homogeneous approach with spatially independent interface stiffness.

Cabello et al. [69] developed a general analytical elastic foundation beam model that is

applicable to both flexible or rigid adhesives, where the former represents almost incompressible

material (ν = 0.5) with unusually high total strain. They showcased the importance of the

adhesive layer’s width-to-thickness ratio (B/tA) by accounting for the stress state in the two

transversal directions. Their model is comparable to the one previously published [64, 70] for

simpler limiting cases, such as full plane strain and combination of plane strain and plane stress

in a cross transversal direction, respectively. The model was validated for three cases, namely

flexible adhesive in addition to the rigid adhesives with higher and lower B/tA ratio. Important

to note is that they focused exclusively on modelling the elastic behaviour of an adhesive joint

before the crack propagation.

The work of Kinloch and Shaw [57] was extended by Manterola et al. [71] who quantified

the influence of width-to-thickness ratio on mode I fracture toughness. The mentioned variation

in fracture toughness is due to combination of two constraint effects. First is the well-known

increase in toughness in case of plane stress condition [57, 60], while the latter is the lateral

contraction near the edges resulting in decreased section area. Using their approach, one can

measure the fracture toughness for a specimen with a large B/tA ratio and then derive the

toughness for cases with different ratios. One thing to note is that they relied on the previously

mentioned beam on elastic foundation model that is unable to reproduce the anticlastic bending

of the substrates. In any case, their approach [71] may be useful to explain the experimental

results of the present thesis.

In this thesis, the aim is to numerically and experimentally investigate the influence of the

specimen width on the DCB delamination. The starting hypothesis made in the present thesis

can be summarised as follows:

• DIC will facilitate accurate identification of material properties on narrow DCB geometries,

• the indentified material properties will be sufficiently accurate and representative to model

wide DCB geometries,

• the developed numerical models will be robust and efficient in comparison with competitive

models.
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The external constraint effects will be considered by using the plate theory to model the

substrates. However, attempt to fully account for the internal constraint effects will not be made

since the starting hypothesis is that wide specimens can be modelled using the test results for the

narrow specimens as is usually assumed. Thin layer will not be modelled by a single-parameter

fracture mechanics, but by CZM which is basically a simple multi-parameter approach.

The aims of the research conducted for the present thesis are given hereafter:

• conduct an experimental programme of DCB tests with variable width,

• apply the DIC technique to study the behaviour of layered plates with an emphasis on the

crack front and DPZ shape,

• model the DCB arms using the plate finite element formulation with a higher order linked

interpolation,

• develop an interface finite element in a way that the interpolations used for separation are

kinematically compatible with the plate degrees of freedom,

• describe the constitutive model of an interface using a TSL shape that is sufficiently precise

and robust on sparser meshes,

• compare the experimental and numerical results to validate the presented model and ex-

perimentally identified parameters of an interface.

The thesis is organised as follows. Chapter 2 consists of the selected introductory theory

relevant to this thesis. Elementary topics such as the crack tip plasticity and the stress state

transition are covered, along with a discussion about the plastic zone suppression. At the end

of Chapter 2, a brief presentation of data-reduction schemes is given, while a rigorous study

of their accuracy is presented in the next chapter. Moreover, in Chapter 3, details about the

preparation of the specimens and DIC measurements are given, with special emphasis on the

comparison between the crosshead and load-line displacement and its significant effect on fracture

toughness. This is followed by a presentation of the method for extracting the actual shape

of the traction-separation laws (TSLs) and a novel experimental procedure for the full-field

observation of delamination necessary for plate-like specimens. Chapter 4 is dedicated to the

numerical model consisting of quadrilateral Q4U3 plate and kinematically compatible INT8

interface elements. In the same chapter, an effort is made to address convergence issues typical



14 CHAPTER 1. INTRODUCTION

for delamination simulations, which transfer to high computational costs and in turn limit their

real-world application. In this thesis, a novel approach to an existing data-reduction scheme

called the ’area method’ is proposed along with the aforementioned full-field observation The

approach is also validated on the synthetic data generated from the virtual experiments. Chapter

5 is dedicated to a comparison of the experimental and numerical results, followed by a summary

of thesis’s contributions in the final chapter.



Chapter 2

Underlying theory

In this chapter, fundamental concepts of fracture mechanics are briefly described. Linear Elastic

Fracture Mechanics (LEFM) was developed in the 20th century primarily by pioneers Griffith [72]

and Inglis [73] in the 1920s. Thanks to the work of Irwin [74, 75] and co-workers in the 1960s,

fracture mechanics was extended to include non-linear material behaviour, such as plasticity.

This led to still evolving theory of Elastic-Plastic Fracture Mechanics (EPFM), with current

efforts [2] aiming to account for other sources of non-linearity such as viscosity, fatigue and

dynamic effects.

This chapter explores textbook topics, such as the plastic zone, and also considers the pos-

sibility of its suppression by the substrates which may have an influence on fracture parameters

as an internal constraint effect. At the end of the chapter, in addition to J integral derivation, a

brief overview of other selected data-reduction schemes is presented.

2.1 Type of Loading

Generally, type of structure failure depends on the material brittleness, i.e. brittle materials will

fail from fracture and ductile materials will fail from yielding. Low temperatures, high strain

rates and triaxial stress state generally suppress yielding and accommodate brittle fracture.

Structures subject to yielding-dominant failure are designed via limit load analysis in which

maximum strength of material must not be exceeded by acting stresses. On the other hand,

fracture-dominant yielding occurs when there are significant defects present in brittle material

which might lead to crack propagation at stresses lower than yield strength (σY S) of material.

This approach is also known as energy based because the total energy of the system is lowered

15
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when the crack growth occurs. There are three modes of crack propagation, namely the opening

mode-I and the shearing modes II and III (Figure 2.1).

Figure 2.1: The three modes of loading (figure redrawn from [7])

Delamination is one of the most important and severe failure modes of composite structures.

Resistance to delamination is essentially resistance to fracture of the interlayer connection, which

is expressed in terms of fracture-mechanics parameters such as the critical energy release rate

(GC), the stress intensity factor (KC) or the J integral.

2.2 Fracture Toughness

The Griffith energy balance states that the change in total energy ET in respect to infinitesimal

increase in crack area dA is equal to

dET

dA
=

dΠ

dA
+

dWs

dA
= 0 (2.1)

where π is the potential energy from the internal strain energy and external forces, while the

work required to create new crack surfaces is denoted Ws. This approach was further developed

by Irwin [74] who defined the change of the potential energy as the energy release rate,

Crack growth occurs when the energy release rate approaches a critical value,

GC =
dWs

dA
(2.2)

which is a material property called fracture toughness (or fracture resistance). Substituting
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2.2 in 2.1 yields

GC = −dΠ

dA
(2.3)

which is valid only during crack propagation. The potential energy can be defined as follows

Π = U − EP (2.4)

where the strain energy is denoted as U and the work done by external forces as EP .

Now consider a cracked plate, very similar to compact tension (CT) specimen, depicted in

Figure 2.2. Load is introduced to the plate by displacement control which means that the external

forces are equal to zero, i.e. EP = 0, while the potential energy can be expressed as the area

under the force-displacement curve

U =

∫ ∆

0

1

2
Pd∆ (2.5)

Figure 2.2: Cracked plate at a fixed displacement (figure redrawn from [7])

Assuming a straight crack front, crack area can be written as A = BdA, where B is the

plate width and a is the crack length. Therefore, the critical energy release rate for a considered

problem with prescribed displacement ∆ reads

GC = − 1

B

(
dU

da

)
∆

= − ∆

2B

(
dP

da

)
∆

(2.6)

Substituting for compliance C = ∆/P , i.e. inverse of the plate stiffness, the critical energy
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release rate is given by expression

GC =
P 2

2B

dC

da
(2.7)

also known as Irwin-Kies equation [76]. Solution for a double cantilever beam (see Figure 2.9) is

straightforward. By defining the moment of inertia for a rectangular cross-section as I = Bh3/12

and assuming a Bernoulli beam theory, a well-known known expression for cantilever beam reads

∆/2 =
Pa3

3EI
(2.8)

so that the compliance

C =
∆

P
=

2a3

3EI
(2.9)

leads to the critical energy release rate

GC =
P 2a2

BEI
(2.10)

Aside from cracked plate or CT test, this expression is also valid for DCB test.

Figure 2.3: Geometry of the DCB specimens

2.3 Crack Tip Plasticity

It is well known [7] that LEFM predicts a sharp crack and infinite stress at the crack tip. This

implies that LEFM is invalid for blunt notches.

In contrast, the concept of crack tip plasticity takes into account yielding zone near the crack

tip where the material is unable to transfer tractions larger than the yield strength (Figure 2.4).

Redistribution of traction must ensue in order to satisfy the equilibrium which results in a plastic

zone ahead of a crack tip. Its radius was first expressed by Irwin [75] as
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Figure 2.4: A first approximation to the crack tip plastic zone (figure redrawn from [60])

rp =
1

π

(
KI

σY S

)2

= 2ry (2.11)

which is a first order estimate with stress intensity factor denoted as KI . This definition of

first order estimate assumes plane stress conditions, which may be taken as an approximation of

stress conditions for very narrow DCB specimens since plane stress is present near the specimen

edges across the width. In case of plane strain, the plastic zone radius becomes about three times

smaller, according to Irwin [75], since yielding is suppressed by the triaxial stress state.

Material in the plastic zone can sustain less stress than it would if it remained elastic. Soft-

ening of plastic zone justifies the increase in the DCB (or CT) effective lever (aeff ). In a similar

way to corrections used in some data-reduction schemes described later at the end of this chapter,

Irwin plastic zone correction increases an effective crack length

aeff = a+ ry (2.12)

Even though the plastic zone shape is considered circular, there is no reason for this assump-

tion aside from simplicity. Actually, shape was found to be slightly different in reality, although

exact shape is not very significant since analyses are typically made along the x-axis (crack prop-

agation direction). In any case, plastic zone shape is usually estimated by 2.11, which actually

assumes stresses going to infinity near the crack tip [7], while in reality all stresses exceeding the

yielding limit must be redistributed.

A way to achieve this is to substitute the Von Mises yield criterion in appropriate stress field
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equations, which leads to a definition of plastic zone shape. See Refs. [7, 60] for more details on

derivation presented hereafter.

The Von Mises yield criterion states that yielding will occur at

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2σ2

Y S (2.13)

where σ1, σ2, σ3 are the principal stresses. Elastic stress field equations for a 2D case is given by

the following equations

σ1 =
KI√
2πr

cos
θ

2
(1 + sin

θ

2
) (2.14)

σ2 =
KI√
2πr

cos
θ

2
(1− sin

θ

2
) (2.15)

with polar coordinates (r, θ), while the third principal stress is either 0 or ν(σ1 + σ2), depending

on whether a plane stress or a plane strain conditions apply. If plane stress is assumed, the Von

Mises yield criterion gives

K2
I

2πr

(
1 +

3

2
sin2 θ + cos θ

)
= 2σ2

Y S (2.16)

Solving for the radius and dividing by first order approximation from Equation (2.11) in case

of plane stress conditions leads to a following dimensionless expression for plastic zone shape

r(θ)

ry
=

1

2
+

3

4
sin2 θ +

1

2
cos θ (2.17)

As expected, the first order approximation is indeed correct for θ = 0, i.e. r(θ = 0) = ry.

Also, for the case of plane stress conditions, plastic zone shape does resemble a circular shape.

For plane strain conditions the third principal stress is equal to ν(σ1 + σ2), which leads to the

following expression for plastic zone shape

r(θ)

ry
=

3

4
sin2 θ +

1

2
(1− 2ν)2(1 + cos θ) (2.18)

Depiction of the calculated shapes (Eqs. 2.17,2.18) is shown in Figure 2.5. Stress triaxiality

transitions across width from plane stress at the edges to plane strain at the inside. At the plate

sides, no stresses along the width are present, which leads to biaxial condition of plane stress.
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Proceeding inwards the degree of triaxiality increases and, starting from one limiting point, stress

state corresponds to plane strain. This transition and interaction of the two stress state is usually

described only qualitatively due to the involved complexities. Even though plane stress zone is

larger than the plane strain, its stiffness E is lower than effective modulus of elasticity E/(1−ν2)

for the case of plain strain. This leads to so-called load shedding [60], which transfers the load

from more compliant surface regions to the interior.

Figure 2.5: Through-width plastic zone in a plate of intermediate width (figure redrawn from [60])

Specimen geometry with full plane stress condition is empirically limited to width of B = 2ry,

while the plane strain dominates for widths higher than B = 10 · 2 · ry, according to empirical

rules given in [60].

In theory, knowing both the plane strain and plane stress material parameters can be com-

bined to arrive at mixed condition parameters (e.g. in Ref. [77]).

2.4 Crack Path

Typically the crack propagation direction is orthogonal to the applied normal stress. However,

crack propagation is not always confined to its initial plane. Angled cracks propagate in the

direction of least resistance or the path of maximum driving force [7]. This can be demonstrated

by analysing the stress fields using the Westergaard solution [7]. Crack will propagate in such

a way as to maximize the energy release rate [7]. From Figure 2.6 is evident how the crack will

tend to propagate in a stable manner across height. Even though fracture toughness is lower

when not at middle, crack tends to approach the mid.
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Figure 2.6: Local energy release rate at the tip of a kinked crack (figure redrawn from [7])

Change of fracture toughness during crack propagation is typically depicted by resistance

curve (R-curve), which is basically a plot of fracture toughness vs crack extension. To account

for variation of fracture toughness along the R-curve presented in Section 3.3 from the next

chapter, suppression of plastic zone may be considered [57]. Fractured specimens geometry

should be analysed for crack path in order to measure the degree of plastic zone suppression.

The suppression of plastic zone is important for two slightly distinct reasons, the first is to

exclude any constraint influence not associated with variable plate width, and second being the

possible interaction of the two.

2.5 J Integral

The concept of J integral was introduced by Cherepanov [36] and Rice [27] independently in

1967 and 1968, respectively. J is a path-independent line integral that is equal to the decrease in

potential energy per increment of crack extension. It is applicable both for linear and nonlinear

elastic material as a measure of energy release rate. Eqs. (2.3) and (2.4) define the the energy

release rate for linear material, however, these equations can be reused for nonlinear elastic

material, except that G is replaced by J

J = −dΠ

da
=

d

da
(U − EP ) (2.19)

For an arbitrary clockwise path Γ around the tip of a crack, as in 2D situation depicted
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in Figure 2.7, the J integral is given as (see Appendix 3.3 in Ref. [7] for more details on steps

between Eqs. (2.19) and (2.20))

J =

∫
Γ

(
wn1 − Ti

δui
δx1

)
ds (2.20)

where

w = strain energy density

Ti = components of the traction vector

ui = displacement vector components

ds = length increment along the contour Γ

The strain energy density is defined as

w =

∫ ϵij

0
σijdϵij (2.21)

where σij and ϵij are the stress and strain tensors, respectively. The traction is a stress vector

at a considered point on the contour, with its components defined in a following manner

Ti = σijnj (2.22)

where nj are the components of the unit vector normal to Γ.

Figure 2.7: Elastic body in which an arbitrary contour is embedding the crack tip (figure redrawn
from [7])

In most cases [60], this nonlinear elastic energy release rate can also be used as a measure

of elasto-plastic energy release rate. Similiarly to GC in LEFM, there is also a critical value JC

that J value must not exceed, otherwise crack propagation will ensue.

For a DCB problem, J integral defined by Eq. (2.20) can be derived into a simpler closed-form

expression, as shown in [11]. Along contour Γ (line ABCDEG in Figure 2.8) both w and nx are
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not zero only for two straight lines AB and EG. For the case of Timoshenko beam theory, along

this part of contour Γ the strain energy is only due to the shear stresses and strains, which are

assumed constant and equal to F/A and F/(µAS), respectively, with AS = A · k. Therefore, the

first term of integral (2.20) results in

∫
Γ
wnxds =

=

∫ B

A

F 2

2µASA
dy +

∫ G

E

F 2

2µASA
dy = 2

∫ −h

0

F 2

2µASA
dy =

F 2

BµASA

∫ −h

0
Bdy

= − F 2

BµAS

(2.23)

Figure 2.8: J integral contour Γ on a DCB (figure redrawn from [7])

To derive the second term, the reaction forces where displacements are prescribed are assumed

as concentrated forces, meaning that the traction ty can be considered applied on infinitesimal

areas where ∂uy/∂x is constant so it can be taken out of the integral in Eq. (2.20). The rotation

of the top arm at the position of prescribed displacement can be written as

∂uy
∂x

= θ − F

µAS
(2.24)

while the rotation of the bottom arm at the position of prescribed displacement is defined as

∂uy
∂x

= −θ +
F

µAS
(2.25)

Recall that ∂uy/∂x can be taken out of the integral, and with ty positive on the top and

negative on the bottom, second term of integral (2.20) results in
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∫
Γ
ty
∂uy
∂x

ds = 2

(
θ − F

µAS

)
1

B

∫
Γtop

tyBds =
2

B

(
Fθ − F 2

µAS

)
(2.26)

where Γtop is the infinitesimal area where the tractions are applied at the top arm.

Replacing Eqs. (2.23) and (2.26) into Eq. (2.20) leads to a solution for the DCB problem

according to Timoshenko theory

J =
F 2

B

(
1

µAS
− 2θ

F

)
(2.27)

2.6 Data Reduction Schemes

Current thesis deals only with the case of DCB specimen depicted earlier in Figure 2.9 with typical

geometry, boundary conditions and loading. Apart from formula 2.10 from the beginning of this

chapter, there are numerous so-called data-reduction schemes used to quantify fracture toughness.

ISO 25217:2009 [8] and ASTM-D3433-99 [9] are international standards for determining the

fracture resistance of adhesive joints in mode I. In the first one [8], three different data-reduction

schemes are given, namely: ’Simple beam theory’ (SBT), ’Corrected beam theory’ (CBT) and

’Experimental compliance method’ (ECM). On the other hand, ASTM-D3433-99 contains only

one data-reduction scheme that is equivalent to SBT. Therefore, in this thesis the focus is mostly

on the data-reduction schemes given in ISO 25217:2009, while the assessment of their accuracy

is given in the following chapter.

Figure 2.9: DCB test
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Critical energy release rate given by SBT method is derived by inserting compliance given

by Timoshenko beam theory in Irwin-Kies Equation (2.7) based on LEFM

GSBT
IC =

4P 2

EB2

(
3a2

h3
+

1

h

)
(2.28)

This method assumes that DCB adherends act as if they were Timoshenko beams clamped

at the crack tip. This implies that the adhesive is infinitely stiff and perfectly brittle, which, of

course, can be only a theoretical assumption and by no means a representative behaviour of a

real adhesive. It is clear that no adhesive (even an infinitely stiff one) can prevent the rotation

of the arms at the crack tip and in front of it if the shear deformability of the arm is taken into

account [20]. Moreover, adhesive usually deforms before breaking, which means that at the crack

tip, there will be some compliance before the crack starts to propagate. For these reasons it is

clear that the measured values of displacement δ, force P and crack length a will never satisfy

the assumptions made in the SBT data-reduction scheme. Accordingly, SBT will generally not

give accurate predictions of adhesive’s fracture resistance.

To adress the aforementioned inaccuracies of the SBT data-reduction scheme, the critical

energy release rate can be calculated using the corrected beam theory (CBT) method based on

the LEFM (Irwin-Kies Equation (2.7)) and Euler-Bernoulli beam theory. In this approach it is

still assumed that the arms are clamped at the crack tip, but it also takes into account the plastic

zone around the crack tip, similarly to what has been proposed by Irwin [75], i.e. by introducing

the effective crack length [78]. The CBT expression for the fracture resistance, expressed as the

critical energy release rate, reads,

GCBT
IC =

3Pδ

2B(a+ |∆|)
(2.29)

where the crack length correction ∆ represents the x-intercept of the linear fit of the (δ/P )1/3−a

plot (see Figure 2.10 or [8] for more details).

Alternatively, the third method suggested by ISO 25217:2009 standard, called enhanced com-

pliance method (ECM), also includes an experimental correction of the measured compliance.

This method corrects the exponent in the formula (2.30) ( [22]). The new value of the exponent

is obtained experimentally by a linear fit of the logarithm scale plot of compliance versus crack

length, i.e. logC − log a. The slope of the linear fit of the data points is the corrected exponent

n. Finally, the critical energy release rate given by ECM equals
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GECM
IC =

nPδ

2Ba
(2.30)

Figure 2.10: CBT correction

Another method, which is not a part of any standard, is the recently developed enhanced

simple beam theory (ESBT) method [20]. It is based on the concept of the equivalent crack

length, which for Timoshenko beam theory is defined as

aeq =
3

√(
1√
α

)3

+
3EIδ

2P
− 1√

α
(2.31)

where α = µAs/EI, µ is the shear modulus, As = A · ks, A is the cross-sectional area of a single

DCB arm, ks = 5/6 is the shear correction factor, E is the Young’s modulus of substrates and

I is the moment of inertia of a single DCB arm. Note that such a definition of aeq accounts for

cross-sectional rotations of the DCB arms at the crack tip and ahead of it due to shear strains

(for details see [20]). Fracture resistance, expressed as the critical energy release rate, can be

then computed as:

GESBT
IC =

P 2

b

(
a2eq
EI

+
1 + 2aeq

√
α

µAs

)
(2.32)

Apart from the methods based on the critical energy release rate (GC), fracture resistance

of the adhesive can be computed by means of the J integral [33]. Neglecting the contribution of

shear strain in Eq. (2.27) by assuming a high value of µAS leads to a slightly simpler J integral

definition

GJ−INT
IC =

P · θ
B

(2.33)

where θ is the cross-sectional rotation of the substrates load-line. In the present work, θ is
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measured by means of DIC (explained in detail in the next chapter).



Chapter 3

Experiments

This chapter explains the experimental setup used for this thesis. In experiments described

in next four sections [79], the DCB substrates are made of aluminium 6060 alloy (E=70 GPa,

ν=1/3), while the adhesive used is SikaPower® 4720. Aluminium grade was increased to 7075

for experiments in the last section (3.5) due to problems with substrate plastification during

bending. First, experimental methods and techniques used are explained, which is followed by

an extensive study on the influence of different loading arrangements on the test results. After

applying the data-reduction schemes presented in the previous chapter, the obtained R-curves

along with traction separation laws are presented in the following two sections. At the end of

this chapter, the experimental setup used for plate-like specimens is presented along with a novel

technique of identifying fracture toughness regardless of specimen width.

3.1 Experimental Methods

The DCB specimens (Figure 2.3) were tested in equal conditions using the tensile testing machine

Zwick Z 600E with force capacity up to 10 kN which is twice the required amount in present

case (evident from the next Section).

Before bonding, the substrate surface was sanded down with a 180-grit sandpaper and then

cleaned with pure acetone. A uniform thickness and distribution of the adhesive on each substrate

was accomplished by means of guide rails for the putty knife. After the adhesive was applied

on each substrate, the specimens were assembled and loaded with weights to ensure the removal

of the excess adhesive. A 0.5 mm thick fishing lines were placed between the substrates at the

edges of the bonding area to control the final thickness of the adhesive layer [80] as a large

29
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variance in thickness may affect the measured material properties of the adhesive [81]. The

initial crack (pre-crack) was formed by placing an aluminium foil along the first 50 mm of the

substrate. According to the manufacturer, full bearing capability of the adhesive joint is reached

after curing the adhesive for 2 days at room temperature, but in this particular case, specimens

were cured during the whole week. After curing, all excessive adhesive was removed from the

specimen edges.

In this thesis, instead of measuring the crack length by visual inspection as suggested in [8],

the experiments were recorded with optical measuring equipment (cameras) and processed by

digital image correlation (DIC). Digital image correlation uses an optical measurement technique

that traces displacement of a body. It is used mainly in experimental mechanics but it also finds

its use in research and research and development departments of numerous industries for its

simplicity over other alternatives.

3.1.1 Digital Image Correlation

If a single camera is used, plane displacements can be tracked in two dimensions orthogonal

to the camera ray, therefore, this technique is sometimes called 2D DIC. By adding another

camera, displacements can be measured in all three directions, which is why this technique is

sometimes called 3D DIC. Cameras capture raster graphics where a single pixel is represented

only by its light intensity (brightness) on a scale from 0 to 255, in case of 8-bit cameras. By

knowing the position of the two cameras, one can triangulate the spatial position of each pixel,

i.e. material point. This concept is usually implemented by painting or spraying the surface of a

mechanical body with a stohastic speckle pattern prior to recording. This part of the specimen

preparation is paramount because, in case of a poor pattern quality, there is a risk that the

system will not be able to recognise any movement or deformation of the body. Quality of

the speckle pattern depends on several factors such as camera settings, calibration of cameras,

pattern paint reflectiveness, as well as randomness of the pattern brightness and frequency of

the recording [82]. Pixel brightness of a speckle pattern can then be interpolated by a surface fit

across a square area of image of predetermined size. These areas of image are also called facets.

Pixels brightness of a single facet is interpolated by a surface spline.

For a mechanical body to be tracked, one must find the correlation between the deformed

and undeformed facet (deformation mapping) across two frames [83]. This is done iteratively

by maximising the so-called correlation coefficient. Finally, one can determine the displacement
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field and, consequently, obtain deformation, speed and acceleration of a mechanical body.

The prepared specimens were sprayed with the anti-reflective white paint, and then speckled

with dots of black paint to create a stochastic pattern for the DIC tracking. First the surface

was coated with a layer of anti-reflective white spray and then, by applying a very slight pressure

on the valve of black spray can, the black spray patches were speckled randomly across the

surface. Different sizes of black speckles were tested prior to final application. Useful guidelines,

such as speckle pattern creation recommendations, are given in [82]. Actual pattern feature size

was ultimately around 4 px which is in line with recommended optimum size [82] of 3-5 px.

Furthermore, key DIC processing parameters are subset size (or facet size) and point distance

(or step size). Recommended subset size is 21 x 21 pixels with a minimum of three transitions

between black and white pattern features in all directions. The second parameter is 18 px facet

point distance, which satisfies the recommended [82] 1/3-1/2 amount of subset overlap.

8-bit stereo greyscale 4 MP (2358x1728) resolution cameras Titanar 20 mm paired with GOM

Aramis V8 software were used to extract the full-field surface displacements. For the experiments

described in the next few sections (starting with Section 3.2), relatively small measuring volume

of 150 x 110 x 110 mm was used in order to gain more precision for the detection of the crack-tip

position. This was sufficient to capture only the first 75 mm of crack length propagation, which

means that the remaining part (approximately 130 mm) was out of frame.

With DIC calibration object of 90 x 72 mm at a desired measuring distance, the focus was

set up manually at maximum aperture setting of F 2.8 with the intention of fine-tuning the

focus within a smallest margin of error possible. The aperture was then increased for two F-

stops in order to achieve the optimal aperture of F 5.6 (sweet spot) i.e., sharpest images possible.

Choosing a larger aperture (smaller F-number) leads to quality degradation caused by aberration,

while a smaller aperture (larger F-number) causes problems with diffraction. The depth of field

at F 5.6 aperture was large enough to sharply capture the details across the region of interest.

Exposure time for this setup was found to be below 0.01 seconds.

The specimens were pulled apart in the tensile testing machine by a crosshead rate of 2

mm/min, which corresponds to 0.0002 mm motion during the exposure time of 0.007 s. Static

images of a prepared specimen were acquired with the measured displacement noise floor of

about 0.00025 mm, which is depicted in Figure 3.1. Because the test piece motion was slightly

smaller than the noise floor, the conservative threshold [82] was satisfied and, consequently, the

measurement uncertainty from motion blur was avoided. Pixel size for the DIC setup used in
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sections 3.2-3.4 was 150 mm / 2358 px = 0.06 mm. Considering that the theoretical uncertainty

of the DIC method is around 0.01 pixel [84], the current setup allowed to obtain the submicron

precision in an ideal scenario.

Figure 3.1: Static experiment for measuring the displacement noise at the position of initial crack
opening, note that the graph y-axis limits are from -1 to +1 micron, while the noise floor values
are marked by blue colour at the positions of the maximum displacement measurements

3.1.2 Measurements of the Key Quantities

Fracture resistance along the interface was calculated from the measured data, i.e., load-line

displacement δ, applied force P , crack length a and cross-sectional rotation at the load-line

θ. The applied force was measured directly from the tensile-testing machine (TTM), while

the crosshead displacement was measured either from the TTM or using DIC as the relative

displacement of measuring points on the upper and bottom rigid block connected to TTM grips

(because the grips were not captured in the frame, as it can be seen in Figure 3.2). Having

independent measurements of the crosshead displacement was essential for synchronising the
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data acquired from the TTM with those obtained from DIC, which was performed by matching

displacements in the initial phase (during the take up of play). In particular, 0.1 mm crosshead

displacement measured by TTM and DIC matches within 0.001 mm, i.e., error between these

measurements is below 1 percent.

In addition, the load-line displacement (i.e., the displacement at the position where the load

is applied on the specimen) was measured using DIC as the relative displacement of measuring

points located directly on the DCB arm. Therefore, it will be assumed that, in general, the

crosshead displacement and the load-line opening are different.

Right-hand side of Figure 3.2 illustrates the following DIC measurements: crosshead dis-

placement δTTM (also acquired from the TTM), load-line opening displacement δDIC at the

DCB arms, relative rotation of the arms at the specimen’s free end θ (for each arm the rotation

of the reference line is measured), separation at the initial crack tip δINIT and the separation

along the interface, which is computed as the relative deflection δrel, i.e., the difference of the

deflection lines (blue lines in Figure 3.2 b), d) and f)) for each arm. The layer deflection lines

were constructed at the initial stage as straight splines with nodes (knots) at 1 mm spacing.

Their deformed shape in later stages is automatically determined by the software using the def-

inition from the initial stage. Note that if the DCB arms are assumed to be transversally rigid,

the displacements at the glued edges of the arms are equal to the corresponding displacements

at the reference lines.

The crack length was computed automatically from the DIC measurements as a location at

which the interface separation reaches its critical value δC corresponding to a complete failure

of the material. By analysing the recorded frames, it was found that the interface separation

corresponding to a visually noticeable crack is 0.2 mm. Visually noticeable crack tip was identified

from a sudden decrease in pixel intensity at one of approximately 8 pixels across the thickness of

the interface. However, after identifying the complete shape of the traction-separation law of the

interface, which is explained in detail in Section 3.4, it was concluded that after the separation of

approximately 0.08 mm, the tractions transmitted at the interface become negligible, implying

that the material of the interface is fully damaged. This result was independent of the loading

arrangement. It was also confirmed that the stage at which the separation at the initial crack tip

reaches 0.08 mm is located slightly after the peak of the load-displacement diagram, which is in

accordance with the analytical solution for a DCB presented in [85]. Therefore, for the purpose

of automatic identification of the crack tip position using the DIC, δC = 0.08 mm was used.
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Figure 3.2: Schemes of the loading arrangements used in the analysis (left-hand side) with the
corresponding DIC measurements (right-hand side), namely: a) - b) loading pins, c) - d) loading
blocks and e) – f) piano hinges
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Cross-sectional rotation of each arm at the load line was determined from the DIC data by

assuming that it is equal to the rotation of the reference line, which is marked in Figures 3.2.b), d)

and f). Because the rotations of the top and bottom arm do not perfectly coincide (experiments

are not perfectly symmetric), θ is computed as a mean cross-sectional rotation, i.e., half of the

relative rotation between the top and bottom arm.

3.2 Load Arrangement Analysis

Two equal aluminium substrates (E=70 GPa, ν=1/3) were glued together along the interface,

with the exception of an initial notch of length a0. Dimensions of the specimens, according to

Figure 2.3 presented previously, are L = 250 mm, h = 8 mm, B = 30 mm and t = 0.5 mm,

while the initial crack length a0 is equal to 29 or 40 mm, depending on the loading arrangement.

Actual thickness of the adhesive layer ranged between 0.47 mm and 0.62 mm, with the mean

thickness equal to 0.53 mm and the standard deviation of 0.05 mm. In total, 9 specimens were

produced, i.e., 3 specimens for each of the 3 loading arrangements considered.

Three different loading arrangements for DCB tests were used in the experimental pro-

gramme, namely: loading holes/pins, loading blocks and piano hinges. Three specimens were

tested for each loading arrangements so that abbreviations Pi, Bi and Hi were introduced for

pins, blocks, and hinges, respectively, where index i=1,2,3 is the specimen number. According

to [8], piano hinges are an alternative to loading blocks, while for metallic substrates, loading

holes can be used as an alternative loading arrangement. In Figure 3.2, all three types of load-

ing arrangements are shown schematically (left-hand side) together with the corresponding DIC

measurements (right-hand side).

Loading holes for specimens P1-P3 were drilled through the specimen width and a pin of

diameter 3 mm was inserted to introduce the load from TTM via a block that was held in the

grips (see Figure 3.2.a) and b)). The distance from the point of application of the load to the

crack tip represents the crack length, while the load-line opening is equal or slightly smaller than

the crosshead displacement.

Loading blocks are usually glued on the specimens, but in case of metallic substrates they

can be attached by means of screws [86]. For specimens B1-B3, each steel loading block was

screwed on the substrate and connected with a steel pin of diameter 8 mm to another block

that was held in the grips of the TTM (see Figure 3.2.c) and d)). At the initial stage of the
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experiment, it can be assumed that the crosshead displacement of the tensile testing machine

(TTM) is equal to the load-line displacement on the specimen. However, as the arms bend,

the blocks rotate creating a difference between the load-line displacement and the crosshead

displacement. For the loading-block arrangement, the crosshead displacement was measured at

the edge of the screw head (Figure 3.2.d). By comparing these measurements with those from

the TTM, it was confirmed that the rotation of the screw head during experiments was negligible

and has therefore no influence on the results. Moreover, in the case of glued blocks it is very

questionable where exactly the point in which the load is applied on the specimen is. Usually,

it is assumed to be in the middle of the block [8], which is a reasonable assumption for blocks

connected by means of screws (as it has been done in this study and shown in Figure 3.2.c) and

d)). The point of application of the load is essential for defining the crack length.

In ISO 25217:2009 standard [8], the stiffening effect due to end blocks is considered by

dividing the load-line displacement by a factor N dependent on block dimensions and current

values of the crosshead displacement and crack length (which essentially defines the rotation of

the block) [24,78]. Because N<1, this results in an increase of the fracture resistance with respect

to the uncorrected value (with N=1). Since this effect is negligible in case of small rotations of

blocks, Williams [78] derived the expression for N considering large displacements of the arms

and (later in the derivation) assuming small rotations. On the other hand, Škec and Alfano [86]

demonstrated that, for small displacements and rotations, the rotation of the block creates an

additional concentrated moment on each DCB arm, which in turn reduces the fracture resistance.

The piano hinges are also typically glued on the specimens, but in case of metallic substrates

they can be attached by means of screws (as it has been done in this study and shown in

Figure 3.2.e) and f)). Piano hinges were screwed on the substrates of specimens H1-H3 and

connected to a block that was held in the grips of the TTM (see Figure 3.2.e) and f)). In this

work, commercial-grade quality piano hinges were used. The load-line is assumed to pass through

the pins connecting the two parts of each piano-hinge [8], which means that a vertical force

from the TTM is transferred from the pin directly on the specimen throughout the experiment.

Therefore, unlike loading blocks, no special corrections are needed to account for the piano

hinges. For loading arrangement with piano hinges, the aforementioned load line, connecting the

pins of the hinges at both sides of the specimen (as defined in [8]), is shifted horizontally with

respect to the vertical line connecting the TTM grips. Given that the crack length is measured

as a distance between the load-line and the crack tip, the arrangement with piano hinges has
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a smaller initial crack length a0 = 29 mm, compared to other arrangements where a0 = 40

mm. Nevertheless, in ISO 25217:2009 standard [8], corrections of the crack length that take into

account large displacements (but at the same time assume that the rotations are small) can be

used for both loading blocks and piano hinges.

Consequently, it is reasonable to deduce that different loading arrangements should not affect

the calculated fracture resistance if appropriate corrections are applied. In fact, the aim of this

investigation is to test this hypothesis. Vina et al. [87] found that geometrical non-linearities

of loading-block arrangements lead to an apparently higher fracture resistance. Aalami and

Chakherlou [88] have recently studied the influence of T-stress for different loading arrangements.

They concluded that the higher stress triaxiality of loading-block arrangements leads to a higher

fracture resistance.

The previous discussion is based on the assumption that the DCB specimen is connected to

the TTM by means of an infinitely stiff loading system. However, due to effects such as take-up

of play and machine compliance (or system compliance), a relatively small part of the cross-head

displacement of the TTM will not be transferred directly to the specimen. The results from the

inter-laboratory round-robin presented in [80] showed that neglecting the effects of the system

compliance can lead to non-negligible differences in the computed fracture resistance of adhesive

joints of steel substrates. Motivated by these findings, a protocol for correcting the cross-head

displacement measured from the TTM by taking into account the system compliance became a

part of DCB standards BS 7991: 2001 and later BS ISO 25217: 2009 [8]. The system compliance

is determined via a tensile test of a rigid calibration specimen (or specimens [89]) of known

compliance. A linear fit of the load-displacement data of the calibrations specimen’s tensile test

gives a constant system compliance. Finally, the measured cross-head displacement from the

TTM is corrected by subtracting from it the system compliance multiplied by the corresponding

value of the applied load.

Although such a procedure undoubtedly increases the accuracy of the computed fracture

resistance, it also has its drawbacks. In particular, it does not account for non-linear machine

compliance [90], as well as linear (elastic) and non-linear (plastic) deformations of the some parts

of the loading arrangement, such as pins, screws and hinges.

The system-compliance correction can be omitted if an extensometer attached to the specimen

[8] or DIC is used to measure the opening displacement. As confirmed by the present study, such a

procedure is more reliable than the tensile test of the calibration specimen. It is worth mentioning
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the system-compliance correction does not exist in ASTM D3433 – 99 (2020) [9] standard for

bonded metal joints, while in ASTM D 5528 – 01 (Reapproved 2007) [10] for unidirectional fibre-

reinforced polymer matrix composites it is stated that an external gauge or transducer shall be

attached to the specimen if the deformation of the TTM with the specimen grips attached is

greater than 2 percent of the opening displacement of the test specimen. However, a procedure

from which this information should be obtained is not described.

It has been found in this study that the tested properties of adhesive depend not (primarily)

on the loading arrangement, but on the position where the load-line displacement is measured.

It has been shown that the difference between the crosshead displacement measured on the

TTM and the load-line displacement measured directly on the specimen using DIC is strongly

dependent on the loading arrangement. This difference is for all loading arrangements also due

to elastic or plastic deformation of parts (pins, blocks, hinges, screws) that connect the TTM

and tested specimens, and possibly due to clearance (gap) between those parts. Note that this

difference cannot be accurately determined using the standard procedure for determining the

machine compliance [8].

Examination of all specimens after failure revealed a very small amount of interfacial failure

which was noticed only outside the DIC frame and only in specimen P3, thus not affecting the

presented analyses. In all other specimens the failure was perfectly cohesive, which confirms

that the method used to prepare the specimens was successful. Specimens P2, P3 and B3 had

some adhesive over the edge of aluminium foil boundary, but this had no apparent influence on

the measured load-displacement curves (shown in the following section). Furthermore, visual

inspection of the specimens after failure showed no signs of permanent plastic deformation of the

arms that might have occurred during loading.

3.2.1 Acquired Load-Displacement Data

In order to accurately assess the adhesive’s fracture resistance, it is essential to have a reliable

load-displacement data. While the applied load measured by the TTM is generally very accurate

and can be readily used in closed-form expressions for the fracture resistance (either GIC or

JINT ), obtaining the exact value of the load-line displacement is not straightforward. This

is because the relative displacement of the grips of the TTM is not directly and completely

transferred to the specimen, which is why in general the actual load-line displacement is smaller

than the cross-head displacement of the TTM. The main reasons for this are (a) the clearance
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between the assembled parts, (b) machine compliance and (c) deformation of parts of the loading

arrangement (pins, blocks, piano hinges).

At the beginning of test, the specimen is pre-loaded, which however is not sufficient to fully

eliminate the clearance between the specimen, the loading arrangement and the TTM, i.e. the

so-called take-up of play effect [80]. In fact, all aforementioned standards except for [9] suggest

that the initial deviations due to take-up of play should be removed from the load-displacement

data (for more details about this procedure see [80]). In the present work, this correction has

been performed, as discussed later in more detail.

The correction of the load-displacement data that takes into account the machine compliance

is a part (annex) of standards [8,10]. In this work, this correction has not been performed because

the actual load-line displacement has been measured directly from the specimen using the DIC.

Note that standards [8, 10] suggest using extensometer for that purpose. Nevertheless, when

measuring the load-line displacement directly from the specimen, one is accounting not only for

the machine compliance, but also for elastic (and possibly plastic) deformations of the parts of

the loading arrangement (pins, blocks, piano hinges). Thus, such a procedure will certainly yield

more accurate results than performing only the standard machine-compliance correction.

Force-displacement graphs measured by the TTM (δTTM is used) are given in Figure 3.3, while

the force-displacement graphs from DIC measurements (δDIC is used) are given in Figure 3.4.

In Figure 3.3.d) and Figure 3.4.d), the average plots of the three specimens for each of the

considered loading arrangements are compared. Note that the loading arrangement with piano

hinges has smaller initial crack length than the other two arrangements (see Figure 3.2), which

results in higher values of the peak force. Furthermore, it can be noticed that the average curve

for the piano hinges in Figure 3.3.c) has an apparent "elbow" of the averaged curve near the

onset of crack propagation, which is not the case when the load-line displacement δDIC is used

(see Figure 3.4.c)).

It should be emphasised that load-displacement plots in Figure 3.3 have been corrected by

excluding the initial deviations due to take-up of play from the measured cross-head displacement.

This is achieved by shifting the plots horizontally so that the liner part of the curve is aligned

with a straight line passing through the origin of the coordinate system following the automatic

procedure described in [41], which can be also done manually, as proposed earlier in standard

BS 25217:2009 [8]. Machine compliance has not been used to additionally correct the cross-

head displacement, because the cross-head displacement δTTM measured from the TTM and
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Figure 3.3: Force-displacement curves from the TTM measurements: a) loading pins, b) loading
blocks, c) piano hinges and d) comparisson between loading arrangements

that measured by the DIC (see Figure 3.2) for the purpose of synchronisation yielded negligible

differences of the compliance in the linear-elastic range.

Nevertheless, as it can be seen by comparing Figures 3.3.d) and 3.4.d), excluding the initial

deviations due to take-up of play (and machine-compliance) from the load-displacement data is

not sufficient to account for the discrepancy of the DIC and TTM measurements. It was noticed

that the load-line displacement measured from the TTM is greater than that measured using

the DIC, which can be attributed to the elastic deformations of the blocks used to connect the

specimens to the TTM grips, but also to elastic and plastic deformations of the weakest elements

of some connection systems.

Moreover, by subtracting the plots from Figure 3.4 from the corresponding plots in Figure 3.3,

plots with the difference between the crosshead displacement and load-line opening (δTTM−δDIC)

on the horizontal axis can be obtained, which is shown in Figure 3.5. It can be noticed that

the difference δTTM − δDIC is dependent on the load (i.e., it increases as the load increases and

vice versa), which confirms that the deformation of the loading arrangement is partially elastic.



3.2. LOAD ARRANGEMENT ANALYSIS 41

Figure 3.4: Force-displacement curves from the DIC measurements: a) loading pins, b) loading
blocks, c) piano hinges and d) comparisson between loading arrangements

However, the increasing and the decreasing part of the curve do not coincide for any of the

considered loading arrangements.

In particular, Figure 3.5.a) shows that for the same value of the load the difference δTTM −

δDIC for loading pins is greater after the peak force than it was before. This implies that, between

the specimen and the grips of the TTM, a certain amount of plastic deformation has occurred.

In fact, visual inspection of the pins after the experiments confirmed relatively small permanent

plastic deformations.

Results for loading blocks shown in Figure 3.5.b) indicate an opposite behaviour – the dif-

ference δTTM − δDIC decreases after the peak force. The stiffness of the loading arrangement

cannot increase during the experiment (it can only decrease).The more the block rotates, the

less the difference, which implies that the difference will reduce as the crack propagates (longer

crack lengths give greater rotations at the load line). It can be noticed that δTTM − δDIC is

not reduced immediately after the peak load because, even in the case of loading blocks, there

is obviously some small amount of plastic deformation taking place in the loading arrangement.
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The plates of the piano hinges attached to the substrates, shown in Figure 3.2.e), deform

during the experiment, and, after the load is removed, remain plastically deformed, which is

shown in Figure 3.5.c). A comparison of the three loading arrangements shown in Figure 3.5.d)

demonstrates that the magnitude of plastic deformation of piano hinges significantly exceeds

that of the pins and loading blocks.

Figure 3.5: Difference between TTM and DIC measurements: a) loading pins, b) loading blocks,
c) piano hinges and d) comparisson between loading arrangements

In order to explain the difference in the TTM and DIC measurements depicted in Figure 3.5, a

preliminary experimental investigation with rigidly connected aluminium plates, instead of DCB

specimens, was performed for each loading arrangement (pins, blocks, piano hinges). By loading

the rigid specimen up to the peak force from the previous DCB tests, cross-head displacement

δRIGID was obtained. Therefore, δTTM − δRIGID can be used as an estimate of the actual

load-line displacement δDIC , without the use of the DIC or the extensometry equipment. It

was shown that for loading pins and piano hinges the rigid-specimen correction overestimated

the actual compliance of the loading arrangement, so that δTTM − δRIGID < δDIC . However,

this correction noticeably improved the accuracy of computed values of the fracture resistance,

especially for the case of loading blocks, where δTTM − δRIGID ≈ δDIC . In fact, this procedure
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could be used to assess the fracture resistance of an adhesive more accurately in cases where the

DIC (or other measuring tools) are not available or desirable. Note that this procedure is not

equivalent to that described in Annex A of standard BS 25217:2009 [8] because in addition to

the machine compliance, it also takes into account the compliance (deformability) of the parts

of the loading arrangement.

3.3 R-curves

In this Section, the change of fracture resistance during crack propagation is presented graphically

in form of resistance curves (R-curves) [77] for all specimens to determine to what extent different

loading arrangements can affect the computed fracture resistance. Three different data-reduction

schemes are considered, namely the Enhanced Simple Beam Theory (ESBT) [20], Corrected Beam

Theory (CBT) [8] and the J integral [27,36]. In the first part, each of them is briefly presented,

which is followed by a comparison of the three methods using the average data for each loading

arrangement. Scatter of the results is analysed by comparing R-curves for all 9 specimens and,

finally, the effect of the difference δTTM − δDIC on the results is assessed. In the following

expressions δ is used for the displacement that can be either a crosshead displacement δTTM or

a load-line displacement δDIC .

In all data-reduction schemes used in standards [8,9], besides the load-displacement measure-

ments, the measurement of the crack length is also required for the calculation of the fracture

resistance. However, as shown in [20], if we look into the standard [8], only the Corrected Beam

Theory (CBT) can accurately predict the actual fracture resistance for quasi-brittle interfaces

and has been therefore used in the present analysis. On the other hand, in [20] it has been

demonstrated that the ESBT method, in which the crack-length measurement is not required,

can be even more accurate than the CBT method. This is an important practical advantage of

the relatively new ESBT method with respect to all other methods from standards because no

special equipment is required for measuring the crack length. It should be noticed that in all

methods, except for the J integral, measuring δ from the TTM or directly from the specimen will

affect the results of the computed fracture resistance, as it is shown later in the present Section.

In standards, corrections for loading arrangement exists only for the stiffening effect of loading

blocks [8]. It is suggested to divide the computed values of the fracture resistance by [25,78]
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where l1 and l2 are the distances from the centre of the horizontal hole in the block to the

reference axis of the adjacent arm and the right-hand edge of the block, respectively. According

to Figure 3.2, l1 = 26mm and l2 = 9mm.

For the J-integral, stiffening effect of loading blocks has been taken into account by adding

an additional member M2/(bEI) to Equation 2.33, where M = Pl1θ is the eccentricity moment

[15]. However, in the course of this study it has been noticed that this contribution may be

disregarded here as insignificant. Moreover, large-displacement corrections proposed in [8] were

not considered in the present paper because, as it can be seen in Figure 3.4 the displacements

were relatively small compared to specimen dimensions (and correction from [8] would influence

the results for less than 1 %).

Note that modulus of elasticity E was back-calculated from experimental data by rearranging

the expression for compliance [80],

C =
δ

P
=

(2(a+ |∆|))3

3EI
(3.2)

where |∆| has been previously determined in the CBT data-reduction scheme. The obtained

value of E was in the expected range for aluminium, i.e., slightly over 70 GPa or, specifically, 71

GPa for loading pins, 76 GPa for loading blocks and 72 GPa for piano hinges loading arrangement.

Average R-curves during crack propagation obtained using different data-reduction schemes

(ESBT, CBT and J integral) are compared in Figure 3.6. They were obtained by averaging the

individual R-curves for each loading arrangement with respect to the crack length, as it is shown

later in Figure 3.7.a)-c) for the ESBT method. Note that for ESBT and CBT R-curves shown

in Figures 3.6 and 3.7, δ = δDIC was used.

Generally, the agreement between different methods is excellent. Considered data-reduction

schemes yield results within 1 percent difference, which is shown on the right-hand side of Fig-

ure 3.6, where normalised values with respect to the fracture resistance given by the J integral

are given, as also done in [11, 91]. A detailed analysis of the computed values of the fracture

resistance for each loading arrangement are given in the following subsection.

In the following analyses, only the ESBT data-reduction scheme is used for the sake of

simplicity. A comparison of all individual tests and mean R-curves is given in Figure 3.7. First,
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Figure 3.6: R-curves obtained using different data-reduction schemes for: a) - b) loading pins,
c) - d) loading blocks and e) – f) piano hinges. Note that in legends of the left-hand side figures
average computed values of the fracture resistance are given



46 CHAPTER 3. EXPERIMENTS

from Figure 3.7.d) it seems that the specimens with loading pins show higher fracture resistance

than the other two loading arrangements. However, it can be noticed that the scatter, not only

between individual tests, but also within a single test is relatively large.

In theory, in case of a homogeneous interface, the shape of the R-curve should be a plateau,

suggesting that the fracture resistance is an inherent material property constant along the in-

terface. However, this is rarely achieved in reality because of the influence of the imperfections

at the interface between the substrates (e.g., substrate surface preparation [92], type of failure,

voids in the adhesive, variation in thickness [93, 94]). On the tested specimens, no significant

differences in thickness of the adhesive layer or defects on the interface (such as voids of interfa-

cial failure) that could be responsible for such a behaviour were noticed. Nevertheless, a more

careful visual inspection indicates that the crack surface is not completely uniform.

It was noticed in the course of this work that the roughness of the crack surface can signif-

icantly differ along the interface. The calculated values of the fracture resistance were higher

on rougher parts of the interface than on the smoother parts. Because these smoother areas,

unlike the rougher ones, appeared to be very close to one of the substrates, such a variation of

the fracture resistance along the interface might also be caused by a variable crack path over the

thickness of the adhesive. In theory [57], if the crack approaches the substrate, the development

of the plastic zone is constrained, which is less pronounced when the crack propagation is in the

mid-thickness [81]. Therefore, the fracture resistance should be at its peak when the crack is at

the half of interface thickness, and gradually decrease when approaching the arms (substrate). A

more detailed analysis of the correlation of the topography of the crack surface and the measured

fracture resistance is, however, outside the scope of this study, but will be investigated in the

future.

Figures 3.7.b),c) and 3.8 show that loading arrangements with blocks and piano hinges had

one tested specimen with significantly lower fracture resistance than the remaining two. This is

clearly the reason why the mean values of the fracture resistance for arrangements with loading

blocks and piano hinges are lower than the mean value obtained for the pins. The average value

of the R-curve for each individual specimen with the corresponding standard deviation across

the crack length is shown in Figure 3.8, namely for holes/pins (P1-P3), blocks (B1-B3) and piano

hinges (H1-H3). If the two specimens with lower fracture resistance (B3 and H3) are omitted from

the calculation, fracture resistance appears to be independent of loading arrangement, leading

to the mean fracture resistance of 7 considered specimens GMEAN
IC = 1361 J/m2. On the other
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Figure 3.7: R-curves computed using the ESBT data-reduction scheme: a) loading pins, b)
loading blocks, c) piano hinges and d) comparisson between loading arrangements using the
mean curves. Note that the mean value of the fracture resistance for each specimen or group of
specimens

hand, without excluding any specimens, GMEAN
IC = 1303 J/m2 is obtained, which is consistent

with values reported in [95] for the same adhesive. It should be also mentioned that maximum

values of the fracture resistance were obtained for specimen P1, especially on the first part of

the interface (see Figure 3.7.a)), where the crack surface was particularly rough.

Specimens with piano hinges show an unusual trend for smaller crack lengths, where a rapid

increase in the fracture resistance is followed by a progressive decrease. Initial increase of re-

sistance may be attributed to so-called effect of finite width that is pronounced for smaller

crack-length-to-width ratio [63, 64].

On the left-hand side of Figure 3.9, a comparison of force-displacement graphs is shown, where

the force is measured by the TTM, while δ on the horizontal axis is either δTTM (measured from

the TTM) or δDIC (measured directly on the specimen using DIC). Again, only average plots of

the three specimens for each of the considered loading arrangement is shown.

On the right-hand side of Figure 3.9, the R-curves are computed using the force-displacement
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Figure 3.8: Average value of the fracture resistance obtained using the ESBT data-reduction
scheme for each individual specimen with the corresponding standard deviation (SD) across the
crack length.

data from the left-hand side of the figure. A comparison of the results obtained using the

displacements from the TTM and DIC reveals significant differences in the computed values of

the fracture resistance. This effect is most pronounced for the loading arrangement with the

piano hinges because, as discussed earlier, this is a loading arrangement that exhibits the largest

(plastic) deformations during the test. In addition, it can be noticed that the difference decreases

as the crack propagates (and the load decreases), which confirms that the deformation of the

loading arrangement is partially elastic.

Erroneous measurement of crack length does not influence the fracture toughness computed

by methods adopted in this work. CBT data reduction schemes has an embedded corrections

that accounts for an effective lengthening of the crack length, while the ESBT data-reduction

scheme and J-integral method do not rely on crack length measurements at all. However, other

data-reduction methods from the standard [8] are sensitive to crack length readings, which is

demonstrated in the Appendix A.
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Figure 3.9: Force-displacement plots on the left-hand side and R-curves on the right-hand side
plotted with respect to either cross-head displacement from the TTM or load-line displacement
measured using the DIC for: loading pins a) - b), loading blocks c) - d) and piano hinges e) – f).
Note that in legends of the righ-hand-side figures the average values of the fracture resistance
are given.
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3.4 Direct Identification of traction-separation law

In this Section, the standard procedure for obtaining the traction-separation law (TSL) of the

adhesive interface [15,19,26,34] is used to assess the effect of the loading arrangement on the shape

of the TSL. In a DCB test, a TSL defines the change of normal traction (stresses) transmitted at

the interface between the substrates with respect to their relative separation δ. Therefore, a TSL

essentially defines the function σ(δ), whose integral over δ is in general equal to the non-linear

critical energy release rate [7], which, for homogeneous interfaces [11], is equal to the J integral,

i.e.

JINT (δ) =

∫
σ(δ)dδ (3.3)

Here it must be emphasised that values of the J integral shown in R-curves in Section 3.3

are the critical values of the J integral (JIC , as defined in Equation 2.33), which are obtained

when in integral 3.3 the lower and the upper boundary are 0 and δC (the critical opening),

respectively. The critical opening corresponds to a complete failure of the adhesive, after which

the transmission of normal tractions between the substrates is no longer possible, i.e., σ(δC) = 0.

Therefore, at the beginning of a DCB test, at the initial crack tip, the values of the J integral

(as defined in 2.33) will increase from 0 to the JIC , where the latter represents the fracture

resistance. Once the fracture resistance is reached, the crack will propagate to a > a0. According

to Equation 2.33, JIC(δ) is computed using the cross-sectional rotations of the arms at the load

line θ. By analogy, values of JINT (δINIT ) at the initial crack tip prior to crack propagation can

be evaluated using the corresponding θ, where δINIT is the separation of the interface at the

initial crack tip. Once that JINT (δINIT ) is defined, the TSL can be expressed as the change

(derivative) of the fracture resistance (JINT ) with respect to increase in separation, i.e.

σ(δINIT ) =
dJINT

dδINIT
(3.4)

Left-hand side (orange dots) of Figure 3.10 shows experimental data of fracture resistance vs.

separation obtained using the mean values for each loading arrangement. Because of the scatter

of these data, evaluating the derivative in Equation 3.4 is not straightforward. One approach

would be to fit the data using a smooth and derivable function, but this has not been done here,

because the aim was not to make any a priori assumptions about the TSL shape, but to obtain
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it with minimal modifications of the measured data.

Piece-wise quadratic fit by Savitzky-Golay (SG) filter [96] was used because its derivative will

yield piece-wise linear function with no overfitting, resulting in TSL shown in right-hand side

of Figure 3.10. This method relies on fitting successive subsets of adjacent data points which

reduces the high frequency noise and yields a smooth differentiation. For least square quadratic

fitting, three neighbourhood points are considered at each side, i.e. window length for Savitzky-

Golay filter is 7. Passing filter shifts vertically the centre point so that it satisfies the quadratic

best-fit function for a given window, which is repeated for each successive point. The aim is to

smoothen the noisy data before taking the derivative without distorting the original data.

In addition to the presented procedure of direct identification, non-linear least square method

exponential fitting can be used. However, the differences are not significant so the straightforward

best fit approach is only briefly presented in Appendix B.

The direct identification procedure is highly dependent on measurement precision. Theoreti-

cal precision of DIC for the current setup is below 1 micron. In Figure 3.10, one can see that the

experimental noise has increased over the course of the experiment. Best precision is achieved

for loading pins arrangement, which was tested first, while the piano hinge arrangement has the

highest noise. Temperature, lighting conditions or possibly pattern quality might have changed

and affected the precision. It is interesting to note that for all loading arrangements, the traction

is close to zero at separation value of 80 microns (Figure 3.10). Therefore, this value is adopted

as the maximum separation δC and used as a threshold for the crack length measurement.

The characteristic length, which is the separation corresponding to the maximum traction

(peak stress) σMAX , is equal to δ0 = 0.004 mm regardless of the loading arrangement (see the

right-hand side of Figure 3.10). Values of the peak stress were lower for piano hinges than for

the other two loading arrangements. This may be attributed to the lower stress triaxiality (or T-

stress) of piano hinges loading arrangement [88] since an increase in the stress triaxiality elevates

the strength of most polymeric materials, including epoxy adhesive layers [62]. Given that the

geometry of the specimens is the same for all loading arrangements, it can be assumed that any

3D effects that might occur have the same influence on all specimens regardless of the loading

arrangement once the crack tip is sufficiently distant from the load-application point. Obviously,

this is not the case at the initial crack tip where the TSL is typically identified. A comparison

of the extracted TSLs for each loading arrangement is given in Figure 3.11.

Because the presented procedure for direct identification of the TSL takes into account only
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Figure 3.10: Direct identification of the TSL: loading pins a) - b), loading blocks c) - d) and
piano hinges e) – f)
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Figure 3.11: A comparison of the identified TSLs for different loading arrangements.

the fracture resistance at the initial crack tip, it is questionable whether the extracted TSLs

are representative for the rest of the interface. For example, for the loading blocks and piano

hinges, the evaluated values of fracture resistance at the initial crack tip were lower than the

average, while for the piano hinges, it is the opposite. This can be observed in Figure 3.7.d).

Consequently, the average values of the fracture resistance obtained from the R-curves are more

representative and reliable.

3.5 Plate-like specimens

In addition to the investigation of different loading arrangements, an investigation of the influence

of the specimen width has been performed. For that purpose, specimens of three different widths

were considered, namely 120, 60 and 30 mm specimens. Accordingly, designations A120, A60 and

A30 were introduced. Again, all specimens had equal length L = 250 mm and thickness of the

plates h = 8 mm. Specimens of different widths were manufactured in parallel with the intention

of distributing the potential influence of cartridge open time across all specimens evenly.

Following the discussion presented in Section 3.2 about the influence of load application

system it was decided that the loading blocks were the most suitable for the current analysis.

Loading system was designed so that the rotation is enabled in all directions, i.e. around all three

coordinate axes. Figures 3.12 and 3.13 depicts the design of different specimen geometries.

Preliminary tests on specimens made of 6060 grade aluminium alloy with the same adhesive

revealed problems with aluminium substrates that exhibited permanent plastic deformation.
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Figure 3.12: Load application system for A60 specimens

Experimental data collected from such experiments would be unusable as all relevant analyses

of the adhesive’s fracture resistance are based on the assumption that behaviour of the DCB

arms is linear elastic. Therefore, a new set of aluminium plates with a higher yield strength was

required in the experimental design. In terms of yield strength, the best available option at the

local market was 7075 grade aluminium alloy. After testing a dog-bone shaped specimen, the

yield strength R0.2 = 533 MPa and modulus of elasticity E = 70 GPa were obtained, which

was satisfactory. In fact, no plastic deformations were noticed in the DCB arms after testing

specimens made of 7075 grade aluminium alloy.

The adhesive thickness was initially controlled by guide rails during the application on each

plate. Afterwards the assembled DCB specimens were manually pressed together with thickness

controlled by 0.5 mm plastic wires. Subsequently, the specimens were loaded with weights

during the curing phase. Narrow specimens A30 were loaded with 1 kg, A60 specimens with 3 kg

and wide specimen A120 with 8 kg. See Table 3.1 with the average thickness for each specimen

determined as the difference of the total thickness of the DCB specimen after and before applying

the adhesive. A mean value of the measurements on each side near the initial notch and near

the mid-length was used. The final thickness of the adhesive ended being thicker in case of
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Figure 3.13: Load application system for A120 specimens

wider specimens. Although during the phase of curing of the adhesive the specimens were loaded

with weights in a way that the average pressure at the edges is approximately constant for each

geometry, with the increase of the width it apparently became more difficult to squeeze out the

excess adhesive.

Moreover, as shown in Table 3.1, significant differences in the average adhesive thickness

were also noticed among individual specimens with the same width. However, by analysing

individual specimens, no correlation between the adhesive thickness and the fracture resistance

was observed. It is therefore reasonable to deduce that for the tested set of specimens, the

increase of the adhesive thickness with the width of the specimen will not have a dominant

influence on the computed values of the fracture resistance.

Interesting to note is how some specimens exhibited unstable crack growth at one point.

Instead of a relatively common stick-slip crack propagation [8], in some of the present cases the

crack propagated suddenly without arrest before specimen failure. As depicted in Figure 3.14

for specimen A120-1, the onset of unstable crack propagation is visible on the fracture surface

as the location where the fracture surface topography changed from rough to smooth surface.

The position of this change left a marked crack front, thus suggesting that the crack has a
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specimen plates w/o adhesive
2h [mm]

glued plates
2h+t [mm]

adhesive thickness
t [mm]

A30-1 16.46 17.03 0.57
A30-2 16.42 17.08 0.64
A30-3 16.50 17.10 0.60
A30-4 16.45 16.83 0.38

A30-mean 16.46 17.01 0.53
A60-1 16.51 17.51 1.00
A60-2 16.53 17.29 0.76
A60-3 16.47 17.42 0.95
A60-4 16.51 17.33 0.82

A60-mean 16.51 17.39 0.88
A120-1 16.35 17.97 1.63
A120-2 16.40 17.92 1.28
A120-3 16.45 17.55 1.03
A120-4 16.52 17.37 0.85

A120-mean 16.43 17.70 1.20

Table 3.1: Average thickness for each specimen

curved shape. The behaviour with a sudden failure was noticeable for A30-3, A60-3 and all A120

specimens, although it was most pronounced for specimens A30-3, A120-02 and A120-03.

As evident from the Table 3.1, those specimens generally had a relatively thick bond, which

seems to be in line with the explanation given in [57] about the higher thickness being correlated

with the unstable manner of crack propagation. However, this correlation is debatable since

the thickest A30 and A60 specimens, namely A30-2 and A60-1, had a perfectly steady state

propagation.

As an alternative explanation, unstable crack growth could be simply due to specimen prepa-

ration. The adhesive was more carefully applied near the initial crack than at the specimen’s tail

where the excess adhesive that remained from the previous application was purposely reused to

reduce waste. At the position of specimen’s tail, the crack propagation is seldom monitored [8]

while the tractions are inconsiderable [11] for the majority of experiment, which means that in

this way the specimen is not weakened. However, for specimen A120-01 in particular (see Figure

3.14), when the crack approached the tail it came very close to the weaker part containing the air

pocket. Unjoined part with the air pocket was probably a result of reusing the excess adhesive.

Therefore, inferior specimen preparation at the specimen tail in conjunction with higher thick-

ness could result in the abrupt failure of certain DCB specimens. There will be more mention of

the abrupt failure at the end of this chapter, along with depictions of the crack propagation for

the individual specimens.
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Figure 3.14: Inspection of fracture surfaces for specimen 120-1 with enlarged crack front marks
shown in binary pixel values

3.5.1 Symmetry Based Top Surface Analysis

There are few available methods to determine the fracture resistance of wide specimens, i.e.

specimens in which the width is comparable to the length. In this scenario the beam theory does

not apply because the crack front is not a straight line i.e. dA ̸= B · da as assumed in Irwin-Kies

Equation (2.7) is no longer valid. The experimental analysis of the double cantilever beam test

generally relies on the beam theory, hence the applicability of determined material properties

to plate-like geometries is questionable. Experimental findings [63] show that the crack front is

curved and that the crack length at the specimen’s edges is shorter than at its center. Earlier

research [63, 66] reported that curved crack front has a parabolic shape and this is also verified

by the present thesis in Section 5.2.

International standards [8, 9] give instruction on how to measure the crack length along the

edge of the specimen assuming that the crack front does not vary along the width of the specimen.
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However, this assumption becomes very questionable for relatively wide specimens. With digital

image correlation it is possible to measure the crack along the entire width, not only at the edges.

This is done by using a measurement method that takes advantage of the experiment symmetry,

as will be presented hereafter.

Measuring volume of the DIC system is basically an imaginary cube (see Figure 3.15) that is

observed in sharp detail by the cameras. Its size depends on the camera lens, aperture opening

and working distance to the observed object. GOM Aramis system provides guideline tables

with expected measuring volume size for the chosen setup. For experiments presented in this

section, setup with the measuring distance of about 480 mm leads to a measuring volume of

285x220x220 mm3.

Figure 3.15: Measuring volume with the mid-line of stereo DIC rays, note how the edge of the
specimen on the right is just slightly outside of the DIC measuring volume

The largest DCB specimen A120 is the hardest to fit into a measuring volume, ultimately

defining the size of it. The optimal position of the cameras is the one that achieves the best image

quality of the observed regions. The aim is to have a good image quality of both specimen’s

top and side surfaces. Given that a large angle of incidence may lead to a poor image quality,

cameras should be observing both surfaces at about 45 degree with respect to their normals.

Furthermore, camera’s sight of observed surface should not be obstructed by obstacles such as

loading blocks. For this reason, both cameras were slightly shifted horizontally in the direction
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of specimen’s tail (away from the blocks) and oriented towards the specimen, while keeping the

desired measuring distance. After a few trial and error positioning attempts in CAD software,

the above-mentioned measuring volume was found to be suitable since, even after accounting for

separating motion of the DCB arms, observed surfaces were found to be inside the measuring

volume throughout the experiment.

DIC technique is useful for monitoring the displacements of a specimen. Primary area of

interest is the relative displacement between the adherends, although the displacements will

be measured for each subset, with about 4000 subsets in total for the largest specimen A120.

Cameras can observe displacements only on the visible surfaces of the specimens (see Figure

3.16). This limitation was overcome by assuming the symmetrical behaviour of the specimen and

measuring the top side relative displacements with respect to the plane of symmetry. Interface

separation or opening is then double of the measured relative displacement. Presented approach

is based on a methodology similar to the so-called Top Surface Analysis (TSA) [97]. The main

difference is that in [97] the separation data is extracted for a limited number of sections

while herein presented approach is applicable to the full-field data. Furthermore,

instead of using linear regression to reconstruct the central axis by extrapolation (as done in [97]),

it may be preferable to utilise symmetry, which is explained below in detail. Therefore, presented

approach can be named Symmetry Based Top Surface Analysis (SBTSA).

First, a global Cartesian coordinate system is constructed so that the x-axis, y-axis and z-

axis are aligned parallel to the length, width and height of the specimen, respectively. This is

done manually at the initial stage by the so-called 3-2-1 locating principle. This basically means

creating and selecting the six (3+2+1) points located at the specimen’s visible side near the load-

line. Figure 3.16 shows these points denoted only as LLT,LLB,LL0,S1 since some of them are

reoccuring. Three points required to define the x-z plane are LLT,LLB and S1, points LLT,LLB

are reused to construct the z-axis, and consequently the remaining two directions, while the last

point LL0 is needed for the origin of global coordinate system.

Knowing the geometry of the specimen is useful for repositioning the global coordinate system.

In fact, centre point of the top surface marked as SC can be constructed post-experiment as the

intersection of top surface’s diagonals and, according to Figure 3.16, should have the coordinates

(x = L/2 = 125, y = B/2 = 60, z = H + t/2 = 9). It is useful to check whether the centre point

coordinates coincide with its beforehand known position. If necessary, the chosen six construction

points can be redefined so that the centre point lies at the desired position within the global
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Figure 3.16: GOM Aramis screenshot of coordinate systems construction with the points needed
for SBTSA denoted as LLT, LLB, LL0, S1T, S1B, S1, S2T, S2B, S2, S3T, S3, SC

coordinate system. A few iterations are usually sufficient to achieve millimetre precision of the

centre point (SC) position. This step is a potential source of error for the later analysis since

it defines the vertical z-axis, i.e. direction in which the relative displacement will be measured.

It seems challenging to perfectly position the specimen horizontally because a slight tilt is often

present (and acceptable). For example, top surface slope can be about 1 degree due to different

elevation of opposing top surface vertices (corners).

The next step is to define the plane of symmetry using three points S1,S2 and S3 so that

the rigid body motion compensation of all displacement measurements could be performed.

Two of these three points lie at the specimen’s side (S1,S2), and are constructed as midpoints of

manually selected points near the initial crack (S1T,S1B) and near the specimen’ tail (S2T,S2B),

respectively. The third one (S3) is constructed from an vertical offset of the top surface point

(S3T) that is far away from the visible specimen side. Furthermore, it is desirable to select the

top surface point S3T near the specimen’s tail since it will be free of deformation for the most

part of the experiment. In order to select a point that is located at the plane of symmetry, the

vertical offset distance should be the thickness of the plate plus the half-thickness of the adhesive.

Obviously, the earlier definition of the vertical direction (global z-axis) is here of a considerable

importance.

Finally, the plane of symmetry can be used to define a x-y plane of the local Cartesian
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coordinate system, which is a basis for the rigid body motion control. Recalculation of local

coordinate system in each time step ensures that the ensuing specimen’s rotation will not affect

the measurements. The measured vertical relative displacement of the top surface can now be

assumed equal to the interface separation. Furthermore, temporal and spatial interpolation filter

is applied to reduce the noise. The filter takes into account data of the two nearest stages, and

nearest 4 facet points, respectively.

As an alternative to this approach, the identified surface may be attached to the previously

imported CAD model of the specimen, and it may even be improved using the iterative closest

point algorithm [98]. However, top surface analysis was not checked against this alternative

approach but compared to a numerical model. An additional and more robust check would be

to use X-ray tomographic imaging.

According to the technical data for SikaPower-4720, maximum elongation at break equals 3

percent which for an adhesive thickness of 0,60 mm will result in 0.02 mm elongation/separation,

which is significantly higher value than extracted by direct identification. However, this value

could be influenced by the stress triaxiality, as the maximum elongation is retrieved for predom-

inantly plane-stress conditions while the current DCB setup is predominantly in plane-strain

conditions, regardless of the varying geometry.

In order to define the damage process zone (DPZ), also known as the fracture process zone,

limit displacement values must be defined in order to create a contour plot of DPZ, as the one

shown in Figure 3.17. These DPZ threshold values are the characteristic separation δ0 and

the critical separation δC , i.e. the separation that corresponds to maximum traction σMAX

and the critical separation value δC that corresponds to interface fracture. Values δ0 = 0.004

mm and δC = 0.080 mm, obtained from a direct identification of traction-separation law from

the previous set of experiments, presented in Section 3.4, are for now adopted also for the wide

specimens. After considering the fact that only half-separation is measured with respect to plane

of symmetry, and after accounting for measurement noise simply by rounding to higher value,

limit values of DPZ are adopted for the purpose of contour plot in Figure 3.17 as 0.01 and 0.05

mm, for damage onset and fracture, respectively. For the sake of simplicity, the influence of

stress triaxiality on the DPZ limit values is neglected in this analysis, i.e. the transition from

plane-stress to plane-strain conditions across the width of the specimen is not taken into account.

By observing the contour plot in Figure 3.17, one can trace the shape and movement of the

crack front. Blue color represents intact interface while the red color indicates that the interface
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is broken. It is obvious that crack is not a straight line across width but rather a parabola-like

curve. In fact, the crack is longer in the middle of specimen than at its ends. This is known in

literature as crack-front tunnelling [60] and it is mostly caused by anticlastic bending of plates.

In fact, by analysing the shear force distribution at the cantilever clamped support according to

the plate theory higher traction are obtained in the middle of the width, as described in Section

5.2 in more detail.

Figure 3.17: Contour plot of A120 specimen opening separation with red and blue contour limits
representing the edges of the DPZ (δ0 and δC)

As earlier in Section 3.2, a substantial difference of about 0.3 mm was registered between

the cross-head and load-line displacement. For the sake of simplicity, cross-head displacement

was corrected by deducting the average value of the aforementioned difference for each specimen

geometry (instead of the exact approach depicted in Figure 3.5). The value of this correction

substantially increased with the increase in the specimen width, yielding 0.2, 0.3 and 0.4 mm, for

the specimens A30, A60 and A120, respectively. Second digit precision was purposely omitted

for the sake of brevity and consistency with displacement readings that are interpolated in 0.1

mm steps. As an alternative, the best-fit approach presented in BS ISO 25217: 2009 [8], which

would result in average correction of 0.1 mm regardless of the specimen geometry, could be

used. The best-fit approach may be questionable since there is no distinct linear part of force-
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displacement curve in case of loading blocks since they exhibit high non-linearity due to the

stiffening effect. The stiffening effect of end blocks exerts a negative moment with direction as

if the end were fixed and the reduction of the lever arm occurs as the arms deform. Regardless

of the approach, it is highly recommended that the displacement used for data reduction scheme

and comparison against numerical simulations are as accurate as possible and appropriately

corrected. An illustration of the importance of this correction, especially on the initiation value

of the fracture toughness, can be found in [80].

3.5.2 Area method

To the best of author’s knowledge, fracture resistance tests are performed exclusively for beam-

like specimens. This is done by monitoring the applied force, displacement, and crack length.

The latter is usually assumed to be uniform across the specimen’s width throughout the DCB

test. Data-reduction schemes are used to compute the fracture toughness using the specimen’s

compliance computed from the beam theory. As an alternative, the area method [24] can be used

to compute the energy release rate for different test setups, including the DCB test. This method

is quite straightforward since it follows from the original definition of the fracture toughness (2.3),

written as a finite difference, i.e.

GC =
∆U

∆A
(3.5)

In literature [24] this formula is often expressed under the assumption that the crack front is

a straight line (∆A = B∆a) and solving for area between the two considered data points

GIC =
1

2B∆a
(P1δ2 − P2δ1) (3.6)

where the values P1, δ1 are from the load-displacement data for the first point, while the values

P2, δ2 is the same data for the second considered point. Standard BS EN 6033:2015 [99] for testing

interlaminar fracture toughness of CFRP composites presents this approach as a data-reduction

scheme that allows for a simple determination of the average value of fracture toughness. In

particular, load-displacement data is recorded at the beginning of crack propagation as P1, δ1

and then as P2, δ2 when the crack has propagated for approximately ∆a = 100 mm, i.e. it

considers only two points. On the other hand, by considering all points during crack propagation

in the load-displacement curve to compute the fracture toughness according to Equation 3.5 can
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yield a typical R-curve, similar as provided by other data-reduction schemes. In this work, the

combination of the two mentioned approaches is used by computing the average value of the

cumulative fracture toughness for each subsequent crack area increment. Therefore, the R-curve

shows the fracture toughness computed for the currently fractured part of interface.

The numerator in Equation (3.5) is calculated as a trapezoidal rule integral of the area

enclosed by the two considered points in the force-displacement curve and the origin of the

coordinate system. The area is always measured starting from the point corresponding to the

onset of crack propagation and ending with the point corresponding to the considered crack area

extension. Crack onset typically occurs slightly after the peak force [85], and in this work it is

determined as a moment in time when the relative opening of the initial crack with regards to

the plane of symmetry exceeds the critical separation value δC/2 ≈ 0.05 mm. As depicted in

Figure 3.18, the green colored curve (labeled as data w/o NL) excludes the area of the elastic part

of the load-displacement curve that usually exhibits a non-linear behaviour caused by stiffening

effect of loading blocks [88] and by softening that is happening at the centre of the crack front

before the peak force [100].

Figure 3.18: Area method (AM, Eq. 3.5) procedure for excluding area prior to crack propagation
(data w/o NL - data without nonlinearity, PROP - onset of crack propagation)

The denominator in Equation 3.5 is the propagated crack area which is extracted using the



3.5. PLATE-LIKE SPECIMENS 65

DIC measurements by tracking the position along length at which the relative separation with

respect to the plane of symmetry is sufficiently close to the critical separation δC/2 ≈ 0.05

mm. This procedure may be prone to erroneous readings if DIC data has a significant amount

of noise. This often happens near the edges of the specimen since here there is no adjacent

area needed for image correlation. However, this difficulty may be dealt with by limiting the

permissible crack area extension in each step and also by simply removing the suspect outliers

by a statistical method. Note that crack area data is required not only for plotting the R-

curves, but also for comparison of experimental and numerical crack front, which will be shown

in Section 5.2. Furthermore, to define the onset of crack propagation, the initial crack length

was rounded to either a0 = 52.5 mm or a0 = 50.0 mm (in order to conform with FEM mesh).

This simplification may lead to errors but mostly for small crack lengths and not much for the

final results.

Previous research by Laffan et al. [101] indicated two main drawbacks of the area method.

First, the initiation value of the fracture toughness cannot be reliably determined since dividing

small values of experimental data will invariably lead to high variance of the results. Secondly, the

sensitivity of the area method to ∆a indicates that it is not well suited for optical measurements.

Figure 3.19: R-curve computed by Area method for A30 specimens (Note that the first 12 seconds
of crack propagation show large scatter so they are not plotted to keep the the graph uncluttered)
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However, in this thesis it is shown that with the procedure presented herein it is possible

to determine convincing fracture toughness results, regardless of the specimen geometry. The

comparison of data-reduction scheme results is first made for narrow specimens (A30). In this

case it is reasonable to assume that the crack front is a straight line and that the beam theory

holds. Earlier result of average fracture toughness of 1.30 N/mm (see Section 3.3) is comparable

to the value 1.37 N/mm calculated using the area method (see Figure 3.19).

Figure 3.20: R-curve computed by Area method for A60 specimens (Note that the first 12 seconds
of crack propagation show large scatter so they are not plotted to keep the the graph uncluttered)

Specimens A60 and A120 (see Figures 3.20, 3.21) show higher fracture toughness with respect

to A30. According to numerical model, increase in the width will not lead to higher but lower

peak force per width for the same displacement. This means that the change in layer mechanical

behaviour with an increased width does not lead to an apparently higher fracture toughness,

and, therefore, can not explain this result.

Analysing the average length of DPZ across the width does not imply any change with

variation of the specimen width. There are different versions of analytical predictions of the

cohesive zone. For example, equation given by Cox and Yang [102] for slender laminates reads
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Figure 3.21: R-curve computed by Area method for A120 specimens (Note that the first 12
seconds of crack propagation show large scatter so they are not plotted to keep the the graph
uncluttered)

lDPZ =

(
E′ GIC

σ2
MAX

) 1
4

h
3
4 = 7.2mm (3.7)

In Figures 3.22, 3.23, 3.24 experimentally measured cohesive zone length was found to be

around 7 mm. Interesting to note is, however, that specimens with unrealistically long cohesive

zone were actually the few without steady-state propagation (see Figure 3.14) throughout the

experiment. This indicates that a significant damage had ensued over a large area before the

sudden fracture. Crack front propagation was otherwise comparable to other specimens in terms

of position and speed. Likewise, the fracture toughness was comparable to other specimens.

Based on the available data and the presented results, it is very difficult to conclude why the

fracture toughness changed with the specimen’s width without additional experimental analyses.

It is also difficult to explain why the unstable crack propagation corresponds with a large DPZ.
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Figure 3.22: Crack propagation with average crack length AC/B (a,c,e,g) and damage process
zone length (b,d,f,h) for A30 specimens
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Figure 3.23: Crack propagation with average crack length AC/B (a,c,e,g) and damage process
zone length (b,d,f,h) for A60 specimens
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Figure 3.24: Crack propagation with average crack length AC/B (a,c,e,g) and damage process
zone length (b,d,f,h) for A120 specimens



Chapter 4

Numerical Model

In this chapter, a numerical model for debonding of a plate-like DCB specimen is presented.

The considered DCB experiment consists of two aluminium plates mutually connected by a

adhesive layer through which an initial crack propagates when the opening load is applied. In

the first section, the plate finite elements used to model the aluminium substrates E=70 GPa are

presented, while the second section focuses on the adhesive that is modelled using the interface

elements with a previously identified constitutive law (see Section 3.4). Although the thickness

can play an important role in the overall behaviour of an adhesive joint, this is typically not

modelled numerically. In fact, the common approach is to embed constitutive laws of the adhesive

in the so-called zero thickness interface elements. Moreover, after analysing the average adhesive

thickness and the average computed fracture toughness for each tested specimen of the same

width, no correlation between these two parameters was noticed (see Section 3.5.2 for details).

Accordingly, the constitutive model of the adhesive is here described by a traction-separation

law (TSL) whose original derivation is presented in the second section of this chapter.

Initially, the assembled numerical model is studied in terms of efficiency and robustness by

comparing it with alternative models. Even though the efficiency and robustness may not have

a significant influence on the simulated structural response, they are essential for delamination

model to be viable outside of academic purposes. At the end of this chapter, virtual experiments

are performed with the aim of validating the data-reduction method presented in the Section

3.5.

All of pre-processing and post-processing code was written in Python, while all FEM calcu-

lations were implemented in FEAP [103] finite element software using in-house code.

71
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4.1 Plate Finite Elements

In general, a plate-like DCB experiment with two glued metal substrates can be described using

a three-dimensional numerical model. For a typical geometry of a DCB problem [9], beam

width to crack length ratio (B/a) suggest that a beam is an inappropriate model for small crack

lengths, which is even more pronounced in case of plate-like specimens. Therefore, the following

two approaches to modelling the DCB in the finite element analysis framework are presented

hereafter.

In the first one, metal substrates can be modelled with one or multiple layers of solid (brick)

elements. Usually with more layers of solid elements across height, only the three displacement

components are used as the nodal degrees of freedom. If only one layer of solids is modelled across

thickness, having more than 8 nodes per element is appropriate. The adhesive layer between the

metal substrates is modelled with be means of zero-thickness interface elements with 8 nodes

that correspond to nodes of the top and the bottom side of the adjacent brick elements. The

three nodal degrees of freedom of the adjacent brick elements are used to compute the normal

separation and two tangential sliding separations at the interface, which depends on the adopted

TSL. The normal separations are related to mode I while the tangential components are related

to delamination in modes II and III.

In the second approach, metal substrates are modelled with flat shell elements with six degrees

of freedom per node, three nodal displacements, two cross-sectional rotations and possibly one

drilling rotational degree of freedom. The number of nodes per element can vary from at least 3

for triangles, or at least 4 for quadrilaterals. More nodes are included if higher order elements

are used. Usually, the number of nodes is chosen to correspond with the shared nodes of an

interface element. The reference plane of shell elements is positioned at the mid-surface of each

metal substrate. The zero-thickness interface element again has 8 nodes that now correspond

to nodes of the adjacent shell elements. Note that the interface between two adjacent shell

elements does not correspond to their reference planes. This is why for computing the relative

displacements at the interface, besides the nodal displacements, nodal cross-sectional rotations

and the distance from the interface and the reference plane have to be taken into account. The

separation in mode I is calculated only as the difference in between transversal displacements of

adjacent shell elements’ nodes, as it does not depend on the nodal rotations and the distance

between the reference plane and the interface [104]. On the other hand, the separation in mode
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II is computed using shell nodal displacements in the horizontal directions, as well as nodal

rotations and distances from the reference planes and the interface..

In a DCB experiment, the separation in mode I is dominant, while the presence of modes

II and III is negligible and therefore neglected. This allows for simplifications in the numerical

models. The general 3D numerical model can be reduced to a single plane and shell elements

can be replaced with plate elements that have just three degrees of freedom per node. Only

displacement transversal to the reference plane is required, along with two cross-sectional rota-

tions per node. The interface element can be positioned in the same plane since plate transversal

displacement is sufficient to compute the separation in mode I.

In conclusion, the first approach with solid (brick) elements will not be considered in this

thesis since these elements require significantly more degrees of freedom in total compared to

plate elements. For example, a layer modelled with 4-node quadrilateral plate element has 4

nodes and 12 degrees of freedom, while the solid element has 8 nodes and 24 degrees of freedom

per each layer across thickness. This difference can increase even more if multiple layers of solid

elements are used to model each layer, which can be required in some cases to maintain an

acceptable aspect ratio of the elements. Therefore, it is self-evident that the second approach

with the plate elements will be computationally more efficient [53].

The DCB experiment is symmetric with respect to the plane of the interface since in the

experiments both metal substrates have the same thickness and material properties. Therefore,

only half of the domain can be analysed in the numerical model. Further simplifications stemming

from the regularity and uniformity of the nodal mesh lead to less computational time. This is due

to constant Jacobian determinant and the lack of need for geometrical transformation matrices

on the individual element in a model.

The moderately thick plate model according to the Mindlin plate theory (see Figure 4.1)

is used to model the substrates. Mindlin plate finite elements have a certain advantage over

Kirchhoff plate finite elements. Not only can they add shear strain energy with bending defor-

mations to the total strain energy to form the total element stiffness matrix, but their lateral

displacement and cross-sectional rotations can now be interpolated independently, while only the

first derivatives of the interpolation functions are needed for strain expressions.

In this thesis, the plate finite element Q4U3 presented in [105] will be mainly used. In short,

it involves cubic interpolation for transverse displacement and quadratic interpolation for the

cross-sectional rotations (commonly called linked interpolation) resulting in constant shear along
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Figure 4.1: Mindlin plate element displacements, section rotations and shear strains (figure is
adopted from [48])

the element edges. Such plate elements are displacement based elements, involving only nodal

displacement and nodal cross-section rotations as the unknown parameters. The interpolation

used in the plate elements is actually a 2D expansion of the formulation that gives an exact

solution for the bending of shear deformable Timoshenko beam element exposed to concentrated

force.

Furthermore, the Q4U3 finite element is problem dependent which means that material pa-

rameters are involved in its highest order terms of the interpolation functions. If the highest

order terms are omitted, a quadratic form of the linked interpolation is obtained.

The governing equations for Kirchhoff and Mindlin plate theories are skipped here for the

sake of brevity, but their kinematic, constitutive and equilibrium equations can be found in

Appendix C.

4.1.1 Interpolation Functions

The displacement fields of Q4U3 plate element are interpolated by expanding the two node beam

element interpolations that satisfy the Timoshenko beam differential equations. However, this

formulation is not also an exact solution of the Midlin plate differential equations. The transverse

displacement is interpolated by a cubic polynomial, which in the case of regular mesh reads
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where element side curvatures between the nodes can be expressed using nodal unknowns,

transversal displacement wi and the two rotations of the plate sections θx,i, θy,i around the local

in plane coordinates, with i = 1, 2, 3, 4, as well as the plate material parameters as follows
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where Lij are the lengths of the element sides between the neighbouring nodes i = 1, j = 2. The

material parameters are the plate bending rigidity D = Eh3/12(1− ν2), plate thickness h, shear

modulus G, modulus of elasticity E, Poisson ratio ν and shear correction coefficient k.

The internal bubble degrees of freedom wB,i complete the cubic coefficients for transver-

sal displacement in the 2D form of the Pascal’s triangle of combinations of variables ξ, η. In

particular, internal bubble parameters for displacement field wBb,0, wBb,3, wBb,4, wBb,5 complete

the cubic interpolation polynomials. Interesting to note is that they do not have any effect on

the displacement field on the element sides and the internal degrees of freedom are statically
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condensed in the process of element stiffness matrix formation. This means that only four dis-

placements wi and eight nodal rotations θxi and θyi are the external degrees of freedom for each

plate element. The Q4U3 passes the constant bending stress condition on the standard patch

test of five elements [105].

The rotations of plate sections are interpolated with the quadratic polynomials in the follow-

ing manner
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Internal bubble parameters in the rotation fields θBb,1, θBb,2 complete the quadratic interpo-

lation polynomials. Once more, these bubble parameters satisfy the conformity of the element

and they can be statically condensed on the element stiffness matrix level.

Formulation of the element stiffness matrix follows the standard principles given in textbooks

[46]. Total energy of the system and the stationarity condition for the total potential energy

leads to the global stiffness matrix, which must also include the contribution from the interface

elements.

4.2 Interface Elements

In a cohesive zone model, a non-linear relationship is introduced between the relative displace-

ments at the interface and the corresponding tractions. Interface surfaces are able to lose co-
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hesion and separate from one another as the interface traction approaches zero. At first, the

material behaves elastically, as it would in a linear calculation, but after reaching the maximum

traction it can sustain, softening at the interface takes place. A slightly modified approach,

known as damage mechanics, is needed to realistically simulate reloading. This requires the

use of secant stiffness (green line in Figure 4.2) instead of tangent stiffness, which means that

the material damage is irreversible, as well as the damage history variable that saves the value

of maximum separation. The relationship between interface traction and separation is called

traction-separation law (TSL).

The area under the curve of TSL (see Figure 4.2) is by definition equivalent to the critical

energy release rate GC . Other TSL parameters such as initial stiffness, maximum traction

(maximum stress) and maximum elongation might be adopted from mechanical experiments on

bulk specimens but this is for the most part neither practical nor reliable. Size effect and change

of stress state result in different behaviour of the material in bulk specimen and thin layered

interface. The choice of initial stiffness is unclear as well, although its influence on simulation has

been well studied. When the initial (penalty) stiffness tends to infinity, the model will reproduce

the results of LEFM. The pre-crack behaviour is mainly governed by this parameter, with higher

values of initial stiffness corresponding to the higher values of the peak force. After the crack

propagation, high value of initial stiffness will be particularly detrimental to the computational

efficiency [30,55] of the finite element simulation.

Figure 4.2: Exponential traction-separation law

Similar to real experiments, numerical simulation uses the displacement control to capture

the drop of the applied load during crack propagation caused by a continuous opening of the
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DCB arms. Applied displacement is incrementally increased and for each increment the solver

iterates until the problem converges, i.e. residual approaches zero. Delamination simulations

often suffer from spurious oscillations [30] in the form of sharp snap-throughs and snap-backs in

the structural response (the latter cannot be captured using the displacement control). Those

are key indicators of computational issues in terms of the convergence rate of a particular mesh

and interface parameters. Higher ductility [55] of the interface parameters and mesh refinements

are the simplest ways to improve convergence.

Large variation of interface stiffness often occurs between the two iterations of the solution

procedure which leads to problems with convergence. This can be due to the inherent material

properties of the brittle interface. Even the relatively ductile interfaces can have issues when

the damage mechanics approach is applied since the secant stiffness is substantially smaller than

tangent stiffness. Change between the two regularly happens during the iterations within a

single increment. Obviously, having a smaller displacement increment will improve the solution

robustness but at the cost of computational time.

Mesh refinement near the crack front will lead to a smoother structural response in the load-

displacement results. However, given that the crack front is moving throughout the simulation,

mesh density has to be high enough throughout the expected path of crack propagation. Ac-

cording to the literature [55], in order to properly model the delamination, the damage process

zone should have a few [106] or several [102] elements along the cohesive zone length. Therefore,

it is challenging to have a relatively sparse mesh while achieving a convergence of the solution

procedure.

The described procedure uses iterative minimization of the global vector of residual forces.

First it checks the energy norm and then the residual force norm. In addition, the numerical

integration rule (Gauss or Simpson [47]) may also influence the robustness and convergence rate

of the solution.

Furthermore, the type of chosen finite element to model the substrates influences the result,

as reported in [49]. Advanced solution procedures, such as the arc-length method [30], can

significantly improve convergence of the delamination simulation. It has been found that the

choice of interface TSL [49] can have a strong influence on the convergence, which will be evident

from the results in the section 4.3.

Consider a thin interface connecting two adjacent layers. Its thickness is so small that it

can be neglected in comparison to the dimensions of the entire problem. These are called zero-
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thickness interface elements since two neighbouring nodes coincide before the deformation takes

place. To model the mode I delamination, TSL should be defined in both the opening and closing

separation. The latter corresponds to compression and is needed to avoid penetration. Even

though the DCB test does not suffer from numerical problems with penetration, compressional

forces are also needed for equilibrium, i.e. producing the force couple in front of the crack tip.

4.2.1 Interpolation Functions

To model delamination in mode I, interface separation with only one component is sufficient.

The direction of this separation corresponds to that of the transversal displacements of the plates

used to model the substrates. Since the transversal displacement of the Q4U3 plate element is

interpolated with the fully populated 2D cubic field, it is physically correct to replicate this

field on the connected interface element. If the plate displacement is expressed with a quadratic

interpolation, the interface interpolation should replicate it too. The quadratic interpolation for

interface element is continuously conformed with the plate element that has quadratic interpo-

lation, or conformed only at the element nodes if the cubic interpolation for the plate element is

used.

However, the cubic interpolation has not delivered significant improvement in accuracy over

the quadratic interpolation [104] in the preliminary case study with beam substrates. In the

examples considered in this thesis, quadratic interpolation still performs better than the standard

linear one. Therefore, the quadratic expression is used in this thesis exclusively. The displacement

field of eight-node interface (INT8) is interpolated by a quadratic expression in a kinematically

compatible way

δI =
1− ξ

2

1− η

2
(w5 − w1) +

1 + ξ

2

1− η

2
(w6 − w2)+

1 + ξ

2

1 + η

2
(w7 − w3) +

1− ξ

2

1 + η

2
(w8 − w4)+

1− ξ2

4

1− η

2

(θy6 − θy5)− (θy2 − θy1)

2
Lx−

1 + ξ

2

1− η2

4

(θx7 − θx6)− (θx3 − θx2)

2
Ly+

1− ξ2

4

1 + η

2

(θy8 − θy7)− (θy4 − θy3)

2
Lx−

1− η

2

1− η2

4

(θx5 − θx8)− (θx1 − θx4)

2
Ly

(4.8)

where Lx = L12 = L34 and Ly = L23 = L41 in the present case of regular mesh. Nodes of the
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plate finite elements are typically located at the midplane and accordingly the interface element

shares these nodal position, as depicted in Figure 4.3. The quadratic interpolation depends not

only on the transversal displacement of 4 + 4 adjacent plate nodes, but also on two rotations

around the plate’s in-plane coordinate axes. This linked interpolation ensures the kinematic

compatibility at shared nodes [53]. Note that no bubble degrees of freedom are used in Equation

(4.8).

Figure 4.3: Interface INT8 degrees of freedom

To derive the stiffness matrix of the interface, the internal virtual work of every element is

defined by the integral

Vint =

∫
A
δ̄IσIdA =

∫ +1

−1

∫ +1

−1
δ̄Iσ

LxLy

4
dξdη (4.9)

with virtual relative displacements (separations) at the interface denoted as δ̄I , while the

corresponding stress (traction) is denoted as σI . The virtual displacements are interpolated in

the same way as the real ones, that is in terms of 8 nodal virtual displacement w̄i and 16 nodal

virtual rotations θ̄xi, θ̄yi (i=1,2,...8).

From (4.8), δI is expressed in terms of the nodal degrees of freedom,
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δI = δ̄I =

24∑
i=1

Ni · δI,i = NT · δI (4.10)

where N is a vector of all individual interpolation functions derived from (4.8) and δTI is

equal to

δTI = {w1, θx1, θy1, w2, θx2, θy2, ...w8, θx8, θy8} (4.11)

which leads to internal virtual work

Vint = δTI ·
∫
A
NT · σ(δI) · dA · δI = δTI ·K(δI) · δI (4.12)

and stiffness matrix of the interface

K(δI) =

∫ +1

−1

∫ +1

−1
NT · σ(δI) ·

LxLy

4
· dξdη =

∑
NGP

NT (GP ) · σ(δI(GP )) · wGP · LxLy

4
(4.13)

Integration is performed through the chosen number of Gauss points (NGP ), with wGP de-

noting the weight value at GP and Lx, Ly denoting the lengths of the rectangular element sides.

It turns out that 3 by 3 Gauss points are sufficient for the numerical stiffness calculation.

The tangent stiffness matrix of the interface element can be obtained and computed for every

displacement control increment in a DCB experiment simulation. Since the relation between

σI and δI is not linear, the residual forces have to be calculated during each increment step by

multiplying the stiffness matrix with the actual separation value δI . Traction is calculated for a

given separation according to the chosen TSL law described hereafter.

4.2.2 Traction-Separation Law

Traction-separation law can have various shapes, such as bi-linear, trapezoidal, exponential, etc.

This thesis will describe the constitutive law of the INT8 interface element by either exponential

[32] or bi-linear [104] TSL. General comparison between the two is shown on Figure 4.4. For the

sake of simplicity, the subscript "I" denoting mode I direction shall be omitted so that δI = δ

and σI = σ, while the GIC = GC .

The required parameters of a bilinear mode-I TSL are σMAX , δ0, δC , with the area under

the curve equal to fracture toughness GC . Stiffness (or penalty stiffness) is simply
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Figure 4.4: Exponential vs bilinear TSL

K =
σMAX

δ0
(4.14)

which is used to describe the the linear behaviour of the interface. After reaching the peak

traction, softening will ensue and stiffness will be reduced to a negative value

KS = − σMAX

δC − δ0
(4.15)

This happens after separation surpasses the characteristic length δ0. Going further, sepa-

ration will at one point exceed the critical separation δC after which the traction completely

vanishes. Therefore, the bilinear TSL can be expressed in the following manner

σ =


Kδ 0 < δ < δ0

Kδ0 +KS(δ − δ0) δ0 < δ < δC

0 δC < δ

(4.16)

where K and KS represent the initial and softening stiffness, respectively.

TSL parameters were retrieved from experiments performed on narrow DCB tests (see Section

3.4). Exponential and bilinear laws depicted in Figure 4.4 have a matching fracture toughness

GC so that the comparison between the two can be as fair as possible. However, the characteristic

length δ0 also matches, which lowers the initial (penalty) stiffness K of bilinear law compared to
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exponential TSL, consequently increasing the ductility (and convergence capabilities) of bilinear

TSL. In fact, the bilinear TSL maximum traction σMAX and the corresponding displacement δ0

matches with those of the exponential TSL.

4.2.3 Derivation of Exponential TSL

Exponential law used here is equivalent to Xu and Needleman’s mixed mode law [31] but for

present application, where only mode I is sufficient, TSL can be defined as

σ(δ) =
GC

δ20
· δ · e−

δ
δ0 (4.17)

K(δ) =
GC

δ20
· e−

δ
δ0 · (1− δ

δ0
) (4.18)

where the latter equation (4.18) is an expression for TSL stiffness. A detailed derivation of the

above expressions is given hereafter. The general form of exponential TSL in mode I can be

assumed as follows

σ(δ) = aδ · e−bδ (4.19)

where the traction is denoted as σ and the separation as δ, while a and b are parameters to be

determined. Maximum value of traction σMAX will occur at separation value δ0, also known as

the characteristic length. This condition can be written as

σ′(δ = δ0) = ae−bδ · (1− bδ) = 0 (4.20)

where the right-hand part in parenthesis leads to a solution for the second parameter

b =
1

δ0
(4.21)

First parameter is found by substituting now determined second parameter b in the expression

for traction

σMAX = σ(δ0) =
a

b · e
(4.22)

a =
σMAX

δ0
· e (4.23)

In cases where it is more appropriate, the parameter a can also be expressed in terms of initial
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slope (stiffness) K0 of the traction-separation curve

K0 = σ′(δ = 0) = a · e−bδ · (1− bδ) (4.24)

a = K0 (4.25)

This gives two TSL expression, one with the maximum traction and the corresponding separation,

and the second with initial stiffness and characteristic separation, respectively

σ(δ) = σMAX · δ

δ0
· e1−

δ
δ0 (4.26)

σ(δ) = K0 · δ · e
− δ

δ0 (4.27)

After the onset of crack propagation, the J integral is typically [11] equivalent to the fracture

toughness GC ,. At this point, the integral of the area under the TSL curve can be expressed to

introduce the principal material parameter, namely the fracture toughness

GC =

∫ ∞

0
σ(δ)dδ

=

∫ ∞

0
aδe−bδdδ

= −a

b

∫ ∞

0
δd
(
e−bδ

)
= −a

b

(
δe−bδ

∣∣∣∞
0

−
∫ ∞

0
e−bδdδ

)
= −a

b

(
0− 0 +

1

b
e−bδ

∣∣∣∣∞
0

)
= −a

b

(
−0− 1

b

)
=

a

b2

= eσMAXδ0

(4.28)

which when substituted in Eq.(4.26) leads to the definition of TSL and the corresponding J

integral using the fracture toughness and characteristic length in the following way

σ(δ) =
GC

δ0e
· δ

δ0
· e1−

δ
δ0 =

GC

δ20
δe

− δ
δ0 (4.29)
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JINT =

∫
σ(δ)dδ =

GC

e
[e− e

1− δ
δ0 · ( δ

δ0
+ 1)] = GC [1− e

− δ
δ0 (

δ

δ0
+ 1)] (4.30)

Equation (4.29) is actually equivalent to the coupled exponential cohesive zone law of Xu

and Needleman [31] either with their coupling parameters r = q = 1 or separation in mode II

δII = 0. Their solution was derived using an energy based approach. For the purpose of coding

the material law in the framework of finite elements, the additional requirement may be the

stiffness (penalty) function obtained from derivation of Equation (4.29)

K(δ) =
GC

δ20
e
− δ

δ0

(
1− δ

δ0

)
(4.31)

Presented derivation was able to reproduce well-known TSL [31,32]. Even though this thesis

only considers the opening mode I, in a similar manner the mode II expression should have been

derived since even the improved expression from the literature [32] is slightly inelegant with

characteristic length in mode II defined as δII0 /
√
2 instead of simply δII0 .

4.2.4 Simple Identification of Exponential TSL Parameters

The first parameter needed for the exponential TSL is obtained from the R-curve, i.e. values of

the fracture variation not only at the initial crack but across the entire interface, by considering

the average value. The other parameter required for the exponential TSL is the characteristic

length, i.e. interface separation δ0 at maximum traction. This section considers the dependency

of characteristic length might on the thickness of adhesive thin layer.

The underlying assumption made in the numerical simulations that the exponential curve can

describe real behaviour of the interface is also adopted for parameter identification. Furthermore,

one can assume stiffness K up to σ(δ0) = σMAX as completely linear with the secant modulus

of elasticity. Size effects on material properties are typically explained statistically as a higher

chance of a defect when the size of a body is larger. In the case of elastic modulus, the size

effect influence has been reported both with stiffening and softening effect, implying that the

influence is minor [107] and that shape effects may be as much important. In any case, of all

the TSL material properties, stiffness is the one that is most comparable for bulk and thin layer

material [44]. The newly proposed simple identification assumes the applicability of the Hooke’s

law to thin adhesive layer
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σMAX = E
∆l

l
= E′

A

δ0
tA

(4.32)

where the effective stiffness of the adhesive reads

E′
A =

EA

1− ν2
(4.33)

Recall Equation (4.28) derived for the exponential TSL, in which Equation (4.32) can be

inserted

GC = σMAX · δ0 · e =
E′

A

tA
· δ20 · e (4.34)

Rearranging the above equation leads to the following characteristic separation definition

δ0 =

√
GC · tA
e · E′

A

(4.35)

This simple approach (4.35) to TSL prediction may be a useful approximation in cases when

direct identification or inverse methods are not available or desirable. Since the second parameter

of exponential TSL (δ0 or σMAX) significantly affects structural force-displacement response only

near the peak force, it is more appropriate to test the validity of the proposed approach only in the

terms of error in the σMAX . The approach will be tested against direct identification approach,

either with the Savitzky-Golay approach from Section 3.4 or with the nonlinear exponential best

fit from Appendix B. Recall how the experimental precision of displacement measurements was

of the order of 1 micron. Given how the identified characteristic length is about 4 microns in the

presented case of direct identification (see 3.4), the reasonable precision of simple identification

approach is also 25 percent. The margin of error for peak traction is harder to estimate, but can

be assumed the same.

The peak traction σMAX can be estimated from the same assumptions (Equations 4.32 and

4.35). It will depend on the same parameters as the characteristic length in Equation 4.35, namely

modulus of elasticity, (average) fracture toughness and adhesive layer (average) thickness.

σMAX =

√
GC · E′

A

e · tA
(4.36)

The validity of the proposed approach is tested using the data from experiments presented
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in Section 3.4, which is shown in Figure 4.5. It can be noticed that the predictions and the

experimentally determined values of the peak traction show a rather good agreement. This seems

quite surprising given the simplicity of the presented approach. The prediction underestimates

the peak traction by 28 % on average. An additional validity check is performed using data from

literature [108], which is presented separately in Appendix D with the purpose of verifying the

proposed method of identification.

Figure 4.5: Validity test of Simple Identification by comparison with direct identification (ab-
breviations: EF - exponential fit, SG - Savitsky-Golay)

The above-presented case studies may be a mere coincidence, instead of a general rule, and

not replicable for a different interface material. For example, actual TSL may have an arbitrary

shape that is not well described by the exponential law. However, an increase in adhesive

thickness causes a decrease in peak traction [108], and this trend is adequately modelled by

Equation (4.36), as depicted in Figure 6.8 of Appendix D.

For present thesis, expression (4.36) will be utilised exclusively for predicting the second

parameter of plate-like specimens since their geometry is inappropriate for direct identification

that relies on edge measurements. Wider specimens described in section 3.5 had a thicker layer

of adhesive which, according to Equation (4.36), translates to lower peak traction. Likewise, if

the layer adhesive thicknesses of specimens S1 and S2 are related as t1A < t2A, TSL correction

based on Equation (4.35) suggest that δS10 < δS20 , or in general

δS20 = δS10 ·

√
tS2A
tS1A

(4.37)
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With the above correction, better simulation of numerical load-displacement response near the

peak load (see Section 5.1) will be achieved for specimens A60 and A120 with their characteristic

lengths corrected via Equation (4.37) to δA60
0 = 0.0065 mm and δA120

0 = 0.0075 mm. In a similar

manner, the critical separation is corrected for analysiss in Section 5.2 by expression

δS2C = δS1C ·

√
tS2A
tS1A

(4.38)

which leads to critical separations δA60
C = 0.010 mm for specimens A60 and δA120

C =0.012 mm

for specimens A120. Note that these values were not previously used in Figures 3.22-3.24.

4.3 Numerical Studies

The numerical convergence on DCB test is studied for both the exponential (4.29) and bilinear

(4.16) TSL, as well as linked (quadratic) and linear interpolation functions for the displacement

and rotations used in the interface elements. The geometrical and material properties used

match those of the specimen A (see Table 4.1) but with the characteristic length δ0 = 0.005 mm

(value before applying corrections from section 4.2.4). The numerical simulations were performed

utilising symmetry by modelling only the upper half of the DCB test, while the displacement

control increments were 0.1 mm up to ultimate 10.0 mm half-displacement.

length/width/height
L/B/h

TSL parameters
δ0/σMAX/GIC

250/120/8 mm 0.005 mm/ 122 MPa/ 1.66 N/mm2

Table 4.1: Geometrical and material properties used for numerical studies

Mesh density was varied to find the computationally least demanding mesh size for every

combination of TSLs and interpolation functions. Plate finite element Q4U3 is used in the present

analysis to model the aluminium (E=70 GPa, ν=1/3). Results for considered combinations in

terms of computational cost and convergence ability are presented in Table 4.2. Abbreviation

N/A (not available) signals that the computation did not converge in all prescribed increments.

The present study suggests that the combination of the exponential TSL and quadratic (linked)

interpolation is the most robust since convergence was achieved even for the two coarsest meshes

considered, namely 5.00 x 5.00 mm and 6.25 x 6.00 mm. Significant spurious oscillations were

observed at these meshes, which may be interpreted as a sign of robustness (it converges although

the mesh is obviously too coarse to give a smooth numerical response).
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FE size
# of FE

6.25x6.00 mm
1440 elements

5.00x5.00 mm
2160 elements

2.50x2.50 mm
8640 elements

1.25x1.25 mm
34560 elements

EXP TSL
QUAD int.

56 s (1 min)
2036 iterations

113 s (2 min)
2294 iterations

297 s (5 min)
707 iterations

3089 s (51 min)
690 iterations

EXP TSL
LIN int.

N/A N/A 300 s (5 min)
716 iterations

3125 s (52 min)
703 iterations

BL TSL
QUAD int.

N/A N/A N/A 3257 s (54 min)
684 iterations

BL TSL
LIN int.

N/A N/A 293 s (5 min)
716 iterations

3576 s (60 min)
703 iterations

Table 4.2: Computational cost of different TSL variants (abbreviations: EXP - exponential, BL
- bilinear, QUAD - quadratic, LIN - linear, FE- finite element, int. - interpolation)

Interesting to note is how the quadratic (linked) interpolation, unlike the linear one, lost

convergence for bilinear law at 2.50x2.50 mm mesh (see Figure 4.6). Specifically, convergence

was lost at 1.2 mm prescribed displacement, which roughly corresponded to the beginning of

crack propagation at 12% of simulation. This is an unexpected result since the bilinear TSL

with quadratic (linked) interpolation generally displayed better convergence in the previous study

with Timoshenko beam elements [104], along with the lower computational cost (as is replicated

by the present study). Therefore, an inferior performance of the quadratic interpolation in

the case of bilinear law shown in Table 4.2 may only be a numerical coincidence. In terms of

computational cost, the required simulation time is comparable for specific mesh regardless of

the considered interface, although the total number of iterations favours the linked quadratic

interpolation formulation by a small margin, as shown in Table 4.2.

The most robust combination, that is exponential TSL with linked quadratic interpolation,

requires a lower number of total iterations for mesh size 6.25x6.00 mm than for 5.00 x 5.00 mm,

which arguably may be attributed to element length 6.25 mm that roughly matches the DPZ

size. Furthermore, for these two demanding meshes, the increment cutting scheme embedded in

the FEAP program [103] was utilised. However, when other considered combinations of TSLs

and interpolation functions encountered too many retries, reducing the increment size did not

help with convergence. This procedure of automatic pseudo-time cutting decreases or increases

the step size as follows, respectively

∆tnew = min
(
∆tmax, 10

log((∆told)+0.2
)

(4.39)
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Figure 4.6: DCB test rectangular 2.50 x 2.50 mm mesh (Note that actual mesh is indeed regularly
rectangular and any deviation from it is caused by FEAP’s lack of antialiasing implementation)

∆tnew = max
(
∆tmin, 10

log((∆told)−0.2
)

(4.40)

where ∆told is the pseudo-time increment before the cutting scheme, ∆tnew is the pseudo-time

increment after the cutting scheme, and ∆tmax,∆tmin are the defined minimum and maximum

pseudo-time increments. The simulation is started with a pseudo-time increment ∆t that in-

creases the displacement by 0.1 mm in each pseudo-time step.

The smoothness of the structural force-displacement response is shown in Figure 4.7. As

mentioned earlier, spurious oscillations are present only for demanding meshes at which the

bilinear law is not suitable. Therefore, the smoothness of the curve is not a distinct factor for

given (undemanding) meshes and scale of magnification in Figure 4.7. The previous study [49]

points to a slightly smoother response in the case of exponential law, which was also reproduced

in preliminary numerical tests made for this thesis.

The following examples will be performed with previously best performing interface, namely

the exponential TSL with linked quadratic interpolation. The plate finite element used in the

previous examples, namely Q4U3, is now compared to FEAP’s [103] original mixed formulation

element named Q4-LIM [109]. The element Q4-LIM uses a quadratic level of linked interpolation

for transversal displacements but has a mixed formulation with linear interpolation of shear
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Figure 4.7: Smoothness of force-displacement response for various interfaces: a) exponential
TSL, b) bilinear TSL (abbreviations: QUAD - quadratic, LIN - linear, FE- finite element, int. -
interpolation)

strain. Comparison was made in terms of efficiency, either by examining computational time

or the required number of iterations. Even though both elements are originally derived for

the Mindlin theory, it is convenient to test them in the limit case, i.e. when they approach the

Kirchhoff theory, by assigning a very high value of the shear stiffness. Reason for the introduction

of Kirchhoff’s limit case is evident after examining the numerical results in Table 4.3 that are

made for mesh 2.50 x 2.50 mm.

Plate FE Computational time No. of iterations Peak force
Q4U3 (Mindlin) 293 sec 707 4690.7 N

Q4-LIM (Mindlin) 267 sec 704 4690.6 N
Q4U3 (Kirchhoff) 251 sec 606 4811.5 N
Q4-LIM Kirchhoff) 218 sec 566 4823.7 N

Table 4.3: Computational cost of different plate formulations

Accounting for the shear strain significantly increased computational cost in both cases, and

for more demanding meshes may introduce problems with oscillations or even loss of convergence.

Actually, this was also noticed for other configurations, for example in the preliminary numerical

model with nonlinear spring interface elements attached to a plate [110].

Russo and Chen [54] reported deflection of the substrate having high compression-tension

oscillations ahead of the cohesive zone. They suggested accounting for the shear strain as a

possible solution to these inaccuracies. This behaviour is indeed fixed by the inclusion of shear

strain [104], but unfortunately new problems with convergence arise since this inclusion also

introduces a discontinuity in cross-sectional rotations ahead of the cohesive zone, which may be

the cause of higher computational cost.
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Computational cost show the benefits of Q4-LIM element over the Q4U3 on the considered

mesh in Table 4.3. However, the reduction of mesh density reveals the robustness of the Q4U3

in comparison with the Q4-LIM. The latter does not converge at more demanding meshes

5.00x5.00 mm and 6.25x6.00 mm, reaching only 39 % and 37 % of prescribed displacement,

respectively. In conclusion, the Q4U3 plate elements in conjunction with interface exponential

TSL with quadratic (linked) interpolation seems to be the best choice among all considered com-

binations. The model is almost able to converge in all prescribed increments at mesh 10.00x10.00

mm (see Figure 4.7), which is larger than the DPZ, and in this way overcome the cohesive zone

limit [54].

4.4 Virtual Experiments

In order to validate the Symmetry Based Top Surface Analysis (SBTSA) method along with

the Area method (see Section 3.5.2), virtual experiments were performed, in which the output

from the numerical model (synthetic data) was used to test the proposed method. Input data

for the finite element (FE) simulation was chosen to match the actual geometrical and material

properties of the tested specimens. Using properties given in Section 5.1 as an input, the finite

element simulation is able to create virtual experiments with the curved crack front using plate

elements and quadratic interface elements INT8 with exponential TSL. A comprehensive analysis

of the crack front shape will be presented in the following chapter. A regular finite element mesh

was created using element size 2.5 x 2.5 mm, which is appropriate since this size matches the

general recommendation from the literature [55] and since the experimental measurements use

DIC facets of roughly the same size. By conducting the same measuring principles (see section

3.5) for virtually created experimental output, the Area method data-reduction scheme should

be able to identify the fracture toughness that corresponds to the original input of the FE model.

Therefore, the expected result of this procedure is a flat R-curve since the virtual experiments

do not suffer from experimental noise and scatter.

Results of the performed virtual experiments for different specimens of different dimension

are shown in Figures 4.8, 4.9 and 4.10 with input value for fracture toughness computed in

section 3.5.2. The adopted area method data-reduction scheme yields predictions of the fracture

toughness that are ultimately within 1 % with respect to the FE model input. This confirms

that the proposed procedure is valid for specimens of different geometries and, and in contrast
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to other data-reduction methods, is able to account for crack front curvature. It can be noticed

that the procedure is not very accurate for short cracks, but approaches the exact solution as

the crack propagates further. In fact, the value of the fracture resistance obtained at the end of

the simulation represents the average for all crack lengths, which follows from the definition of

the method explained in Section 3.5.2.

Figure 4.8: R-curves from A30-1 virtual experiment, note that the errors (Err.) are calculated
for last considered point in the R-curve

The standard area method formula (3.6) shows large scatter around the FE model input, so it

is presented by a slightly transparent line in Figures 4.8, 4.9 and 4.10. On the other hand, using

the ESBT data-reduction scheme, based on the beam theory, leads to accurate prediction of the

fracture toughness. This result indicates that data-reduction schemes based on the equivalent

crack length could be used also on specimens with lower length-to-width ratio to produce accurate

predictions of the fracture resistance. The fact that in such specimens the crack front is curved

does not significantly influence the accuracy of the method, since it is based exclusively on the

measurement of the applied load and the load-line displacement, which is done the same way

independently from the specimens’ dimensions. It is expected that the CBT method from [8]

would also show a similar behaviour since it accounts for a crack-length correction based on the

measured compliance. Although the crack length measured at the edge of the specimen might be

not representative for specimens with a curved crack front, after correcting it, the CBT method

will yield accurate predictions of the fracture resistance. The main advantage of the ESBT

data-reduction scheme with respect to CBT is that it completely bypasses the measurement and
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correction of the crack length, which could significantly simplify the experimental setup since

the optical measuring tools for the crack length are not required.

Figure 4.9: R-curves for A60-1 virtual experiment, note that the errors (Err.) are calculated for
last considered point in the R-curve

The variation in specimen width does not indicate any change in the computed fracture

toughness due to anticlastic bending of the substrates. An additional numerical study of the

virtual experiments with variable widths is presented in Appendix E to confirm this conclusion.

Synthetic data from the virtual experiments can be further utilised to analyse the cohesive

zone length. The cohesive length δ0 of the TSL was adopted from the experiments on narrow

specimens (A30) with different load application arrangement (see section 3.4). This value is then

slightly modified by Equation (4.35), yielding 0.0050-0.0075 mm characteristic length depending

on the thickness of adhesive layer. It is possible that the characteristic length has changed

between two sets of experiments from sections 3.2 and 3.5. Note that experiments from Section

3.5 are used in the analyses in this and the following chapter. Given that the direct identification

relies on the edge measurements of cross-sectional rotation at the load line and on the crack tip

separation, the direct identification approach is not well suited for specimens with low length-

to-width ratio (i.e. plate-like specimens). However, assuming that the cohesive zone length is

dependent on material parameters in a following manner [102],

lcz =

(
E′

A

GC

σ2
MAX

)1/4

h3/4 (4.41)
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Figure 4.10: R-curves for A120-1 virtual experiment, note that the errors (Err.) are calculated
for last considered point in the R-curve

one may conclude that any error in fracture parameters of the interface will result in an inconsis-

tent cohesive zone length of real and virtual experiments. Inserting the required parameters in

the above expression gives a cohesive zone length approximation of 8 mm, slightly higher than

the experimentally measured 7 mm. Cohesive zone length measured from the virtual experi-

ments, depicted in Figure 4.11, is about 6 mm which is slightly smaller than the length from the

real experiments. The mentioned differences in this parameter are either a slight overestimate

or underestimate of the real cohesive zone length, suggesting that the simply identified second

TSL parameter (see section 4.2.4) is not too far from the actual value.

Figure 4.11: DPZ for A60-01 virtual experiment (pseudotime 60 s match 1 mm of displacement)
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4.4.1 R-curves by ESBT Method

As demonstrated earlier, the R-curves obtained by ESBT data-reduction scheme can provide ac-

curate predictions of the fracture toughness regardless of the specimen geometry. Area method

data-reduction scheme with SBTSA method, can accurately predict only the average fracture

resistance during crack propagation, but cannot provide a standard (non-cumulative) R-curve.

Therefore, the ESBT method will be used to obtain the R-curves for all tested specimens (de-

scribed in section 3.5), which is depicted in Figure 4.12.

Figure 4.12: R-curves summary by ESBT method

Although this graphical representation might seem unclear, it can be noticed that within the

range of the fracture resistance between 1.5 and 2.0 N/mm results, two of tested widths of the

specimen, namely A60 and A120) almost entirely fit. If only R-curves up to aEQ=100 mm are

considered, no significant difference between A60 and A120 specimens can be noted, which is

even more evident when considering the mean values of these curves over the relevant domain.

In fact, even for some individual specimens of different widths such as A30-3, A60-3 and A120-1

there are parts of the R-curves where the differences in the fracture resistance are very small.
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However, when the average fracture resistance is computed for each specimen and each width

(see Table 4.4), the difference between different widths becomes more evident.

specimen fracture toughness
GESBT

C [N/mm]
A30-1 1.65
A30-2 1.07
A30-3 1.57
A30-4 1.44

A30-mean (1.43)
A60-1 1.74
A60-2 1.59
A60-3 1.73
A60-4 1.62

A60-mean (1.67)
A120-1 1.86
A120-2 2.04
A120-3 1.85
A120-4 1.66

A120-mean (1.85)

Table 4.4: Fracture toughness obtained with ESBT data-reduction schemes

It seems that specimens A30 have a more stable crack propagation, but in average have lower

fracture resistance compared to that of specimens A120, for which unstable crack propagation

occurred in each test. In terms of the value of the mean fracture resistance and stability of the

crack propagation, specimens A60 are indeed positioned between A30 and A120.
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Chapter 5

Comparison of Experimental and

Numerical Results

In the first section of this chapter, a comparison between the experimental and numerical load-

displacement data is given. An additional comparison is made between the experimental and

numerical results, this time with an objective of studying the crack front shape and size, as

well as the DPZ size. This comparison reveals whether the selected numerical model is capable

of reproducing the experimentally observed crack front shape. Obtained results validate both

the experimental and numerical methods proposed in the present work. Finally, an analysis of

the fracture toughness variation with varying width of the specimen indicate the geometrical

dependency of this material parameter.

5.1 Comparison of Load-Displacement Curves

Following the discussion about the load-line displacement measurement presented in Section 3.5,

the data from the TTM might be unreliable. The standard procedure [8] is to shift the force-

displacement plot so that the linear part of the curve passes through the origin. It is questionable

whether this criterion is appropriate for loading blocks that exhibit significant nonlinearity even

before crack propagation since the stiffening effect [88] prevents rotation for small load-line

opening. Furthermore, due to the anticlastic bending of plate-like specimens, softening occurs

in the structural force-displacement response prior to peak force since the middle section might

be damaged while the edge part is still intact [100]. Therefore, an objectively linear-elastic part

of the measured force-displacement curve is hard to define.

99
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Edge measurements of real load-line displacement with DIC is attempted with limited success.

During the assembly of wider specimens, loading block parts at the edges (denoted as E120

in Figure 3.13) were loosely screwed when necessary to allow free rotation around the axis.

Consequently, the rigidity of loading blocks was occasionally compromised which means that the

edge measurements of load-line displacement might not be representative in those cases. Because

of the aforementioned unreliability in the second method, its correction was rounded to 0.1 mm,

which ultimately led to a good agreement of the experimental and numerical load-displacement

elastic response (before crack propagation).

Data used for comparison of experimental and numerical results is summarised in the Table

5.1. As a reminder, fracture toughness was computed for each specimen in section 3.5, while

the characteristic length was identified on previous set of experiments in section 3.4 and then

corrected using the method presented in Section 4.2.4 via Equation (4.37) to account for the

adhesive thickness variation. Peak traction σMAX for exponential CZM depends on the previous

two values, while the actual initial crack is measured after specimen failure and rounded to 2.5

mm to comply with the FEM mesh (see the last column in Table 5.1).

specimen fracture
tougness GC [N/mm]

characteristic
length δ0 [mm]

peak
traction σMAX [MPa]

initial
crack a0 [mm]

A30-1 1.55 0.0050 114 52.5
A30-2 1.09 0.0050 80 52.5
A30-3 1.43 0.0050 105 52.5
A30-4 1.39 0.0050 102 52.5

A30-mean (1.37) (0.0050) (100) (52.5)
A60-1 1.70 0.0065 96 52.5
A60-2 1.52 0.0065 86 52.5
A60-3 1.77 0.0065 100 52.5
A60-4 1.55 0.0065 87 52.5

A60-mean (1.63) (0.0065) (92) (52.5)
A120-1 1.63 0.0075 80 50.0
A120-2 2.06 0.0075 101 50.0
A120-3 1.71 0.0075 84 52.5
A120-4 1.67 0.0075 82 52.5

A120-mean (1.77) (0.0075) (87) (51.25)

Table 5.1: Material properties of the interface

For specimens A30, an excellent agreement between the experimental and numerical force-

displacement curves is obtained, which is shown in Figure 5.1. In general, small differences

may be attributed to experimental uncertainty or material property deviations across the crack

length. However, numerical simulation of specimen A30-3 underestimates the experimental load-
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displacement response in Figure 5.1.c).

Figure 5.1: Comparison of experimental and numerical load-displacement response for specimens
A30

Next set of results is for specimens A60, presented in Figure 5.2, where more experimental

scatter is present, making the comparison between the model and the experiment more difficult.

The most pronounced discrepancy is visible for specimen A60-3 near the peak force in Figure

5.2.c). This may be attributed to a material defect near the initial crack tip.

Finally, a comparison of the curves for widest specimens A120 is depicted in Figure 5.3,

where some experimental scatter can be again observed. This time the issue seems to be with

specimen A120-01 where experimental and numerical curve disagree near the specimen failure,

with numerical estimation slightly underestimating the structural response. This may be due to

method of data-reduction, namely the area method which does not properly account for tougher

experimental response near the end of crack propagation. This is due to the area calculation

depicted in Figure 3.18, where increase in force will not enclose significant portion of area before

the subsequent force decrease.
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Figure 5.2: Comparison of experimental and numerical load-displacement response for specimens
A60
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Figure 5.3: Comparison of experimental and numerical load-displacement response for specimens
A120
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Even though the agreement between the experimental and numerical load-displacement re-

sponse is for the most part satisfactory, the area under the load-displacement curve obtained

from the numerical simulation for specimen A30-3 is smaller than that under the experimental

load-displacement curve. This implies a possibility of an inaccuracy in the computation of the

fracture toughness for specimen A30-3 that in fact had a very long DPZ prior to abrupt failure

(see Figure 3.22.f)). As an additional check, the present comparison is repeated in Appendix F

with the fracture toughness for individual specimens computed using the ESBT data-reduction

scheme. This issue is indeed fixed when using the ESBT method, however, differences between

the results of this two methods are not significant (about 4 % on average). Therefore, further

analysis will be made primarily using the data obtained by the Area method.
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5.2 Crack Front Shape

At the beginning of the DCB test, the crack will tend to propagate in the middle of the width

prior to propagating at the edges, which is known as the crack tunnelling. Before the onset of

crack propagation, the plate edges will even compress one another due to anticlastic bending.As

explained in Section 3.4, this behaviour presents a difficulty when measuring the initial crack

opening separation at the edges [26]. In addition to the mentioned anticlastic effects, which are

external constraint effects [58], there are also effects concerning the adhesive (internal constraint

effects). Those are primarily geometrical influences such as thickness and width, which lead to

different stress states in the adhesive layer. This is an additional explanation for crack tunneling

since lower stiffness caused by lower triaxiality at the edges distribute more load to the middle

(load shedding) [60]. However, a good estimate of crack front shape that is presented hereafter

would suggests that accounting for spatially varying interface properties, due to stress triaxiality,

is unnecessary for a good agreement of experimental and numerical data.

The experimental and numerical crack front shape analysis is presented in Figures 5.4, 5.5, 5.6

for specimen A60-1, and Figures 5.7, 5.8, 5.9 for specimen A120-1. At the left-hand side of each

figure the enlarged region of interest (ROI) is shown, while on the right hand side of these figures

load-displacement response and the location of the region of interest (ROI) on the specimen are

shown. Particular specimens and prescribed displacement were picked with consistency in mind.

The narrowest specimen was intentionally omitted due to a larger portion of edge areas relative

to the total area of the interface since DIC measurements at the edges are typically lost, which

becomes less important when the specimen is wide.

Experimental reading of threshold opening (δA60
C /2=0.050 mm, δA120

C /2=0.060 mm) defining

the crack tip is shown with a red curve, while the white curve defined at (δA60
0 /2=0.003 mm,

δA120
0 /2=0.004 mm) represents the experimental measurement of other edge of the DPZ. Nu-

merical readings of the DPZ are depicted by the limiting colours of the contour plot, i.e. yellow

border is the isoline corresponding to the opening (δA60
C /2=0.050 mm, δA120

C /2=0.060 mm) and

the purple border is at (δA60
0 /2=0.003 mm, δA120

0 /2=0.004 mm) opening. For the presented

numerical and experimental analysis, the agreement of crack front shape and magnitude is sat-

isfactory. Differences between the experimental and numerical average crack length are around

few millimeters, while its shape is especially well modelled.

When considering the force-displacement response in conjunction with crack front shape
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analysis, it is clear how the underestimate of numerically predicted force coincides with the

overestimate of crack length. This conclusion is in accordance with fundamental theory, since

less force is required to achieve the same displacement at a longer span. However, when the

numerical and experimental load-displacement response overlap, e.g. in Figure 5.7, the model

might still not be able to accurately predict the crack front position. This can be attributed

simply to experimental scatter of crack front readings, which is more evident when observing

the crack propagation as an animated series of graphs presented on the left-hand side of Figures

5.4-5.9.

Although the presented numerical results tend to underestimate the crack length by a small

margin, this is not always the case. Recall how the coordinate system origin definition, described

in Section 3.5, was made by hand picking the auxiliary points on the screen. The mentioned

check of top plate intersection of diagonals did in fact yield errors in position of up to 1 mm. It

is likely that this error was transferred to the measured crack length and partly contributed to

the observed error of few millimeters. Furthermore, data processing for the presented analysis

can impact the reliability of the results so a brief explanation is necessary.

First of all, contour plots on the left hand side of Figures 5.4-5.9 use interpolation to present

the numerical data as smooth contour lines. Numerical data is given on a grid with 2.5x2.5 mm

raster, which corresponds to the size of both the numerical finite elements used in simulations

and to the size of experimental facets. In case of experimental data, facets are not stationary

throughout the experiment, so the grid data had to be interpolated twice. Cubic interpolation

is an appropriate choice since the beam theory uses it to exactly describe DCB deflection. Obvi-

ously, the data without cubic interpolation is not as smooth and it would reveal less information

about the crack front shape.

Interesting to notice is how the DPZ shape, e.g. in Figure 5.4, does not resemble the over-the-

width (through-width) distribution of the plastic zone according to elementary EPFM (Figure

2.5), in which the size of the plastic zone is larger when closer to free edges than at the inside.

Unfortunately, the experimental evidence about the size of the plastic zone at the very edges of

the specimen is lost since a row of DIC facets is missing. This happens because for DIC correlation

neighbouring facets on all sides are required. Furthermore, data for the next few rows across

the width may be altered by the cubic interpolation, where once more the neighbouring data is

required to perform the interpolation. Therefore, an additional check of DPZ shape at the edges

was performed by analysing experimental data that was now interpolated linearly throughout the
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Figure 5.4: Crack front shape analysis for specimen A60-1 and 4.8 mm prescribed half-
displacement (stage A)

Figure 5.5: Crack front shape analysis for specimen A60-1 and 5.0 mm prescribed half-
displacement (stage B)
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Figure 5.6: Crack front shape analysis for specimen A60-1 and 5.2 mm prescribed half-
displacement (stage C)

Figure 5.7: Crack front shape analysis for specimen A120-1 and 4.8 mm prescribed half-
displacement (stage A)
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Figure 5.8: Crack front shape analysis for specimen A120-1 and 5.0 mm prescribed half-
displacement (stage B)

Figure 5.9: Crack front shape analysis for specimen A120-1 and 5.2 mm prescribed half-
displacement (stage C)
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rectangular grid. This attempt is shown in Figure 5.10 for the same experimental data already

depicted in Figure 5.8, which does not reveal that FPZ is to any extent longer at the edges of the

specimen. Note how experimental separation in Figure 5.10 is presented as full-field data instead

of only contours of threshold opening as done earlier in Figures 5.4-5.9. Furthermore, even if the

DIC facets at the edge were available, it is not straightforward how to differently define DPZ

threshold δ0 and δC depending on the stress state.

Figure 5.10: Crack front shape analysis with linear instead of cubic interpolation of experimen-
tally measured separation
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5.3 Discussion on Increase of Toughness with Width

The influence of the specimen width on the computed fracture toughness is depicted in Figure

5.11.a), which suggests the correlation of the increased adhesive layer’s fracture toughness with

the increase in specimen width. The average fracture toughness of the plate-like specimens

(A120) is 29 % higher than that of the narrow specimens (A30) and only 8 % higher than that

of the specimens A60. The widths considered in the current experimental programme are not

extensive enough to draw much further conclusions. In a similar manner, the correlation between

the fracture toughness and the adhesive thickness is noticeable in Figure 5.11.b), especially for the

thickness ranging between 0.75 and 1.05 mm where specimens with considerably different widths,

namely A60 and A120, give similar values of the fracture toughness. Given the correlation of

specimens’ width and thickness, it is hard to fully distinguish (uncouple) the influence of these

two internal constraint effects. Finally, in the Figure 5.11.c), the correlation of the width-to-

thickness ratio of the adhesive layer and the computed fracture resistance is given for reasons

discussed below.

Figure 5.11: Fracture toughness vs a) specimen width or b) specimen width-to-thickness ratio
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As already discussed in the introduction, Kinloch and Shaw [57] were among the first to

recognise the fracture toughness dependence on the specimen width. One of their key finding is

depicted in Figure 5.12. They described the bulk fracture toughness dependency on specimen

width by employing stress triaxiality explanations. Higher degree of stress triaxiality and plane

stress conditions, present near the sides of the specimen, are more dominant for narrow specimen.

This in turn, leads to larger plastic zone [60] and higher values of the fracture toughness. However,

an open question was left unaddressed about the opposite trend when same epoxy adhesive is

used as a thin layer in a joint. Although the explanation that higher fracture toughness is due

to a larger area of the plastic zone may seem reasonable, it is not obvious why would there be a

larger area of the plastic zone for wider specimens. Part of the graph in Figure 5.12 referencing

joint (thin layer) behaviour is actually a qualitative verification of the present results in Figure

5.11.a).

Figure 5.12: Fracture toughness vs specimen width, Figure is copied from Ref. [57]

Manterola et al. [71] explained width dependency of the adhesive thin layer with lateral

contractions and stretch-shortening phenomenon that will decrease the effective area for narrow

specimens. With their method, fracture toughness for specific B/tA ratio can be used to compute

the corresponding fracture resistance for any B/tA ratio. However, this method was not able

to replicate the dependency of the fracture resistance on the width of the specimen that was

observed in the present work, which is possibly due to the fact that their model was verified

only for flexible, but not for rigid adhesive. Even though the trend of increase in toughness with

higher B/tA may qualitatively explains the results shown in Figure 5.11.c), stretch-shortening
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phenomenon is not a convincing argument for geometrical and material properties of the rigid

adhesive tested in the present work. The computed fracture toughness for the narrow specimens

(A30) was over 20 % lower than for the wide (A120) specimens. According to the method

proposed in [71], this difference would be due to the reduction of the effective area of the narrow

specimen by more than 20 % percent, or over 3 mm at each side, which obviously cannot be true

for the rigid adhesive used in the experiments.

When analysing the different adhesive thicknesses for identical specimen width and the

measured fracture toughness, either via Area method or ESBT data-reduction scheme presented

in Table 5.2, no clear correlation is noticeable. For specimens A30, it appears that the specimen

with the thickest adhesive (A30-2) gives fracture toughness that is considerably lower compared

to those computed for other A30 specimens and especially to specimen A30-3 whose adhesive

thickness is very similar. The results for specimens A120 indicate that there might be a maximum

of the fracture toughness between adhesive thicknesses 1.29 and 1.63 mm, but there is not

sufficient experimental data to support such a conclusion. According to [57], an optimal adhesive

layer thickness corresponds to the plastic zone diameter, while thinner or thicker layers both result

in a lower fracture toughness. Former was explained by the plastic zone suppression, while some

authors explain the latter by higher chance of a defect for thicker adhesive or by a numerical

analysis of maximum stress in an adhesive layer [94,111]. Additional experimental studies [58,112]

confirm finding in [57] with optimal epoxy adhesive thickness, although some studies found no

significant influence [93] of (epoxy) adhesive thickness on the measured fractured toughness,

while in other studies [113] an almost linear increase of the fracture toughness with an increased

(polyurethane) adhesive thickness was observed. Conflicting conclusions from the literature

[57, 81, 93, 113] and small variations of the adhesive thickness for each separately considered

width in present work does not facilitate the removal of adhesive thickness influence from the

presented analysis.

It is worth mentioning that a considerable scatter in the individual R-curves (see Figure

4.12) occurs with no or very little variation of the adhesive thickness along the interface. It is

still unclear why such big jumps/drops in the computed fracture toughness occur in the R-curve

given that the failure of the adhesive is perfectly cohesive and no significant defects were noticed

at the interface. Such oscillations in the R-curve are not necessarily symmetrical around the

mean value and, therefore, can strongly influence the computed average values of the fracture

resistance presented in Table 5.2 that were used in numerical simulations.
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specimen fracture toughness
GAM

C [N/mm]
fracture toughness
GESBT

C [N/mm]
adhesive thickness
t [mm]

A30-1 1.55 1.65 0.57
A30-2 1.09 1.07 0.64
A30-3 1.43 1.57 0.60
A30-4 1.39 1.44 0.38

A30-mean (1.37) (1.43) (0.55)
A60-1 1.70 1.74 1.00
A60-2 1.52 1.59 0.76
A60-3 1.77 1.73 0.95
A60-4 1.55 1.62 0.82

A60-mean (1.63) (1.67) (0.88)
A120-1 1.63 1.86 1.63
A120-2 2.06 2.04 1.29
A120-3 1.71 1.85 1.03
A120-4 1.67 1.66 0.85

A120-mean (1.77) (1.85) (1.20)

Table 5.2: Fracture toughness obtained with Area method (AM) and ESBT data-reduction
schemes



Chapter 6

Conclusions

Principal aim of this thesis was to test whether the adhesive material properties experimentally

measured on standard beam-like DCB specimens can be used to adequately describe specimens

of different geometries, namely plate-like specimens. To conduct this study:

• an extensive experimental programme was conducted and the results were comprehensively

analysed,

• new methods for identifying material properties of the adhesive were developed and vali-

dated against the existing methods,

• and an effective numerical model was developed and validated against the experimental

data.

Each of these points will be explained in more detail in the following paragraphs.

Experimental tests of DCB specimens of various widths were performed on a standard tensile-

testing machine while the DIC technique was employed for measuring the following quantities:

crack position and shape of the crack front, normal separation at the interface along the length,

crosshead displacement, as well as the displacement and cross-sectional rotation at the load line.

All the mentioned experimental data was collected from 21 DCB experiments in total, which

is, not only extremely rare and unavailable, but in some aspects even unexisting to the best

of author’s knowledge. Prior to varying width of the DCB specimens, an extensive study of

load arrangement influence was performed in order to eliminate it (in case it exists) from the

experimental data that will be later acquired on specimens with varying width, but also to select

the most appropriate loading arrangement for the plate-like specimens.
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The acquired experimental data was used to compare the fracture toughness predictions in

terms of R-curves obtained using different data-reduction schemes. It was demonstrated that

the accuracy of both ESBT and CBT data-reduction schemes is comparable to that of the J

integral. Thus, all three methods can be considered as accurate and reliable, although there

are some differences when it comes to the practical application. The J integral approach re-

quires the measurement of the cross-sectional rotation at the load line, while the CBT method

requires the crack-length measurement. On the other hand, ESBT data-reduction scheme does

not require any measurements other than force and displacement, but, unlike the CBT method,

requires an accurate value of Young’s modulus of the substrates. It was concluded that obtaining

high-accuracy predictions of the fracture toughness in DCB tests can be hardly done without

adding the DIC measurements. Although the analysed fracture surfaces on the broken specimens

revealed that the failure of the adhesive was almost exclusively cohesive, the computed R-curves

revealed some unpredictable bumps and oscillations. The source of such behaviour was not fur-

ther examined, but this will be certainly done in the future. For now, it was just assumed that

this might be possibly caused by crack path variations along the thickness of the adhesive layer

and plastic zone suppression in contact with the substrates. Furthermore, a direct identification

of the traction-separation law was performed for narrow specimens yielding high precision results

of 1 micron resolution. This method, however, is not applicable to wide specimens and some

adjustments had to be derived before using the extracted parameters for the plate-like speci-

mens. Finally, the limitation of existing delamination test methods relying on the beam theory

was overcome by developing the so-called Symmetry Based Top Surface Analysis (SBTSA) and

implementing the Area Method to calculate the fracture toughness of wide specimens. This novel

approach was later validated by means of virtual experiments performed using the novel numer-

ical model. In addition, virtual experiments revealed that the ESBT data-reduction scheme can

provide accurate predictions of the fracture toughness regardless of the specimen geometry (i.e.

width).

As a final contribution of this thesis, a novel numerical model for simulating delamina-

tion/debonding in DCB test was developed and compared to similar models from the literature.

The substrates were modelled using Q4U3 plate finite elements with cubic linked interpolation,

while the adhesive was modelled using novel interface elements with an embedded exponential

traction-separation law. Besides being significantly more computationally efficient compared to

3D solid FE models, it was demonstrated that the proposed FE formulation is capable of obtain-
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ing converged solutions on meshes with elements of size comparable to that of the cohesive zone

without using advanced numerical techniques. This is an important feature of the proposed FE

model since the requirement of a sufficient number of rows of elements in the DPZ is a well-known

limitation when it comes to numerical modeling of adhesive debonding.

Comparison of experimental and numerical data was made in terms of force-displacement

response, as well as the crack and cohesive zone length and shape. The results show a very good

agreement between the numerical and experimental data. External constraint effect regarding

the anticlastic bending of plates is sufficient to properly model the crack front tunnelling. How-

ever, the performed virtual experiments did not suggest any increase in the identified fracture

toughness with the width of the specimen. On the other hand, internal constraint effects such as

stress state variation in the adhesive layer were not taken into account in the numerical model.

This simplification did not lead to any significant inaccuracies in the crack front shape, suggesting

that introducing such complexities in the numerical model is not required for the present analysis.

Although this aspect is in accordance with the starting hypothesis, some fundamental questions

were raised about the fracture toughness increase with the specimen’s width. In particular, the

computed fracture toughness for the narrow specimens (A30) is found to be almost 23 % lower

compared to wider specimens (A60) and (A120), while the difference between specimens A60 and

A120 is smaller. Although this phenomenon is known in literature, the provided explanations

do not convincingly explain why this happened in the present study. Finally, the coincidental

increase of specimen thickness that in the present work occurred in parallel with the increase

of specimen width would require uncoupling of these two influences on the measured fracture

resistance to draw stronger and more general conclusions. Future work includes the following:

• (a) detailed analysis of the broken specimen topography to correlate it with observed

oscillations in the R-curve,

• (b) further development of the SBSTA method on irregular geometries for which the stan-

dard data-reduction schemes are not applicable,

• (c) test the FE model for different geometrical and material parameters, especially for

different ductility and/or rigidity of the adhesive layer,

• (d) extend the FE model to debonding in modes II and III along with the higher-order

facet shell elements for the substrates obtained by adding the membrane degrees of freedom

and accounting for non-rectangular (curved in-plane) geometry when necessary, which can
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ultimately be utilised to model mode mixity and to position facet shell elements along the

curved crack front.



Appendices

Appendix A: Crack Reading Sensitivity of SBT and ECM Data-

Reduction Methods

As discussed earlier in section 3.4, an automatic method for determining the crack tip position

using the DIC, based on the value of the maximum separation of the interface δC , is used in this

thesis.

Therefore, by adopting different values of δC , different crack lengths are obtained from

the DIC measurements. The two unmentioned data-reduction schemes from the standard BS

25217:2009 [8], namely SBT and ECM, are sensitive to inaccuracies in the measurement of the

crack length. This is shown in Figures 6.1 6.2, 6.3, where the R-curves calculated by SBT and

ECM [22] method are clearly affected by different values of the maximum interface (critical)

separation δC used in the DIC post-processing.
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Figure 6.1: Sensitivity analysis of crack length defining critical separation (P1-P3)

Figure 6.2: Sensitivity analysis of crack length defining critical separation (B1-B3)

Figure 6.3: Sensitivity analysis of crack length defining critical separation (H1-H3)
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Appendix B: Direct Identification of TSL using the Exponential

Best Fit

Instead of Savitsky-Golay (SG) filter used in section 3.4, the non-linear least square method

exponential fitting (EF) can be used, as depicted in Figures 6.4, 6.5, 6.6.
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Figure 6.4: Direct identification of loading pins TSLs with Savitsky-Golay and exponential best
fit approach, note that the average values of specimens P1-P3 are used

Figure 6.5: Direct identification of loading blocks TSLs with Savitsky-Golay and exponential
best fit approach, note that the average values of specimens B1-B3 are used

Figure 6.6: Direct identification of loading hinges TSLs with Savitsky-Golay and exponential
best fit approach, note that the average values of specimens H1-H3 are used
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Appendix C: Plate Theories

The plate theories [47] can be based on the same assumptions as the beam theories in a sense that

the transverse shear deformation is either accounted for or neglected in assumed plate section

kinematic and constitutive equations. If neglected, the governing theory is the Kirchhoff plate

theory. The plate is assumed to be of a uniform thickness h with a mid-surface lying in the

horizontal coordinate plane and a distributed load field acting on the plate mid-surface in the

perpendicular direction. The displacement field is assumed to be linear across the cross-section

u(x, y, z) = −z
dw0

dx
(6.1)

v(x, y, z) = −z
dw0

dy
(6.2)

w(x, y, z) = w0(x, y) (6.3)

where (u, v, w) are the displacement components along the (x, y, z) coordinate directions, re-

spectively, and w0 is the transverse deflection of a point on the mid-surface (i.e. z = 0). Same

as for the beam theory, the displacement field [114] implies that material fibres normal to the

xy-plane before deformation remain straight and normal to the mid-surface after deformation.

This assumption neglects both the transverse shear and in-plane effects and deformation is solely

caused by the in-plane stretching or shrinking due to bending.

There are several shear deformation plate theories [115]. The simplest is the first-order shear

deformation plate theory also known as the Mindlin plate theory, which is closely related to the

Timoshenko beam theory and may be regarded as its generalisation to two-dimensional problems.

The displacement field is expressed as

u(x, y, z) = zθy(x, y) (6.4)

v(x, y, z) = −zθx(x, y) (6.5)

w(x, y, z) = w0(x, y) (6.6)

where θx and θy denote cross-sectional rotations about x and y axes, as depicted in Figure 4.1.

The difference between the normal and the actual rotations are the shear angles. The change of

angles that the initially vertical fibres close with the mid-surface are the cross-section rotations

around the global coordinate axes angles and are not necessarily perpendicular to the deformed
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plate plane

Γ =

γxz

γyz

 =

 θy +
∂w
∂x

−θx +
∂w
∂y

 =

 0 1

−1 0


θx

θy

+


∂
∂x

∂
∂y

w = eθ +∇w (6.7)

while the curvatures of the deformed plate plane, i.e. the fibers change of rotation are

κ =


κx

κy

κxy

 =


∂θy
∂x

−∂θx
∂y

∂θy
∂y − ∂θx

∂x

 =


0 ∂

∂x

− ∂
∂y

0

− ∂
∂x

∂
∂y


θx

θy

 = Lθ (6.8)

where θ is the rotation vector with components θx and θy rotating around the respective

in-plane axes x, y, w is the transverse displacement field, Γ is the shear strain vector and κ is

the curvature vector. Gradient of the displacement field is denoted as ∇w while the differential

operator on the rotation field is denoted as L. A following linear elastic constitutive law is

considered

M =


Mx

My

Mxy

 =
Eh3

12(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2




∂θy
∂x

−∂θx
∂y

∂θy
∂y − ∂θx

∂x

 = Dbκ = DbLθ (6.9)

S =

Sx

Sy

 = kGh

1 0

0 1


γxz

γyz

 = DSΓ = DS(eθ + ∇w) (6.10)

where Mx,My,Mxy are the bending and twisting moments around the respective co-ordinate

axes, while Sx and Sy are the shear stress resultants. Young and shear moduli are denoted as E

and G, respectively, while ν and k are the Poisson’s coefficient and the shear correction factor

that is usually taken as 5/6 for rectangular sections and plates.

The Kirchhoff theory is basically a limiting case of the Mindlin theory when Γ approaches

zero which is valid for very thin plates and is called a ’thin limit’. In case of Mindlin theory, the

functional of the total potential energy reads

Π(w, θx, θy) =
1

2

∫
(κTDbκ)dA+

1

2

∫
(ΓTDSΓ)dA+ΠEXT (6.11)

By minimization procedures of this functional the equilibrium conditions can be achieved if

sufficient boundary conditions are defined.
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Appendix D: Simple Identification Verification

An additional validity check of proposed method of identification (see section 4.2.4) is performed

using data from the literature [108], which is depicted in Figure 6.7. The authors studied the

effect of adhesive thickness on the parameters of the traction-separation law by testing adhesive

LOCTITE Hysol 9460 with six different thicknesses ranging from 0.09 mm to 1.00 mm. They

found that the increase in the thickness leads to a higher critical opening δC at the crack tip and

an increase in the fracture energy. The former is the important part to consider since it suggests

that the elastic properties of thin layer are valid regardless of layer thickness.

Figure 6.7: TSL Data from G. Ji et al (2010) [108]

In addition, the higher thickness was reported in [108] to decrease peak traction as is in

fact expected from expression (4.36). As might be expected, smallest thickness had the highest

recorded peak traction and they concluded this trend would continue for smaller thickness,

although this is not in line with earlier research [58].

In any case, the fracture toughness they calculated from the DCB test along with Poisson’s

ratio and modulus of elasticity from the data sheet are the inputs used for the prediction of peak

traction by Equation (4.36). Detailed comparison of prediction by Eq. (4.36) versus experimental

data from [108] is given in Figure 6.8. The prediction of second parameter (σMAX) is excellent

if the fracture toughness is calculated by a LEFM method from a DCB test, i.e. prediction

underestimates the peak traction by 3 %, with discrepancies mostly at very thin layers 0.09 and

0.20 mm. On the other hand, if fracture toughness is calculated by a EPFM method, namely the

J-integral, agreement is not as good since in this case, the prediction overestimates peak traction
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Figure 6.8: Additional validity test of simple identification by comparison with data presented in
G. Ji et al (2010) [108] (abbreviations: LEFM- linear elastic fracture mechanics, EPFM- elasto-
plastic fracture mechanics)

by about 24 %.
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Appendix E: Virtual Experiments with Variable Plate Width

In order to test the influence of external constraint [58] of the variable substrate width, the

virtual experiments were performed for variable widths using the constant interface material

parameters δ0 =0.0075 mm and GC = 1.66 N/mm. It is evident from Figures 6.9, 6.10, 6.11 and

6.12 that influence of variable substrate width does not account for a significant change in the

fracture toughness of the variable width specimens. Therefore, the anticlastic bending can not

be an (only) explanation for the results presented in section 5.3.
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Figure 6.9: R-curve for A30 virtual experiment. Note that the errors (Err.) are calculated for
last considered point in the R-curve

Figure 6.10: R-curve for A60 virtual experiment. Note that the errors (Err.) are calculated for
last considered point in the R-curve
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Figure 6.11: R-curve for A120 virtual experiment. Note that the errors (Err.) are calculated for
last considered point in the R-curve

Figure 6.12: R-curve for A240 virtual experiment. Note that the errors (Err.) are calculated for
last considered point in the R-curve
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Appendix F: Comparison of Load-Displacement Curves with frac-

ture toughness calculated also by ESBT

The analysis of load-displacement responses in Section 5.1 revealed slight inaccuracy in modelling

of specimen A30-3. As an additional check, first the ESBT data-reduction scheme is used to

compute the fracture toughness which is then used as an alternative numerical model input.

This method was considered because virtual experiments presented in Section 4.4.1 showed that

it can be used with a high accuracy even on plate-like specimens. Values computed by the ESBT

method are presented in Table 5.2 side by side with the values computed by the Area method

and the corresponding adhesive layer thickness. Comparison of experimental and numerical load-

displacement response presented in Figures 6.13-6.15 displays two numerical curves made with

data from Table 5.2.

Figure 6.13: Comparison of experimental and numerical load-displacement response for speci-
mens A30. Note that the fracture toughness is computed either by Area Method (AM) or ESBT
data-reduction scheme (abbreviations: EXP-experimental results, NUM-numerical results, RSD-
relative standard deviation)
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Figure 6.14: Comparison of experimental and numerical load-displacement response for speci-
mens A60. Note that the fracture toughness is computed either by Area Method (AM) or ESBT
data-reduction scheme (abbreviations: EXP-experimental results, NUM-numerical results, RSD-
relative standard deviation)



132 CHAPTER 6. CONCLUSIONS

Figure 6.15: Comparison of experimental and numerical load-displacement response for speci-
mens A120. Note that the fracture toughness is computed either by Area Method (AM) or ESBT
data-reduction scheme (abbreviations: EXP-experimental results, NUM-numerical results, RSD-
relative standard deviation)
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