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Received: 30 September 2021 / Accepted: 4 April 2022
© The Author(s) 2022

Abstract
This paper presents a formulation for frictionless beam-to-beam contact using the mortar
method. The beams are modelled using the geometrically exact theory. A similar approach
has been proposed very recently, with respect to which we offer a formulation based on a
Lagrange-multiplier method and a simpler algorithm to cover the static interaction within
the contact zone and analyse the performance of the method for different orders of interpo-
lation for the Lagrange multiplier and in the presence of self-contact. Appropriate contact
kinematics is developed from which the residual vector and the tangent stiffness matrix are
obtained from a suitable contact potential and its variation and consistent linearisation for
implementation in the finite element method. The algorithm describing the fulfilment of the
contact kinematics is described in detail. The mortar method is found out to be suitable for
modelling beam-to-beam contact and self-contact. The geometrically exact beam theory as-
sumes full rigidity of the cross-sections and as such is naturally prone to higher oscillations
in the contact force near the boundaries of the contact zone. For sufficiently small load steps,
however, a stable solution is obtained, making it appropriate for future research.

Keywords Geometrically exact beam theory · Beam-to-beam contact · Line-to-line
contact · Mortar method · Finite element method

1 Introduction

Finite element analysis with geometrically exact beam elements is widely used in modern
industry with applications ranging from dynamical analysis of umbilical cables, offshore
risers and mooring dynamics in maritime engineering [11, 21, 29], bridge columns and
rope-way systems in civil engineering [12, 41], composites and fibre materials in material
engineering [10, 25], wind turbine blades and multi-body dynamics in mechanical engineer-
ing [17, 36], DNA molecules in biological engineering [9] and more. Treating a mechanical
system as a one-dimensional can provide a variety of advantages. Generally it results in
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a smaller model, reducing the computational effort in a solution procedure, and modified
boundary conditions, specifically in the rotational degrees of freedom.

There has been a lot of research on efficient, robust and precise finite elements. The
watershed moment in this field was the development of geometrically exact beam theory
by Simo [31] and its finite-element implementation by Simo & Vu-Quoc [32, 33]. Since
then, many variants have been proposed for interpolating kinematic fields, with some more
notable improvements proposed in [5, 6, 8, 16, 34] and investigated in detail in [1, 2, 30].
However, the original element is still highly revered and widely used in practice.

Modern contact mechanics extensively utilises mortar method [3, 4, 15, 22, 26–28, 37].
It is a Lagrange multipliers based method with contact conditions imposed in a weak sense.
There are additional variables introduced into the system compared to the penalty approach,
however, such method is proved to comply with Ladyzhenskaya–Babuška–Brezzi (LBB)
condition stating that there exists a unique solution to the underlying saddle-point type
problem [3]. Contact analysis in beam models is lagging behind these developments and
it was not until very recently that the first paper has been published presenting a mortar
formulation for frictionless beam-to-beam contact [7]. A lot of research in beam contact
mechanics is focused on a point-to-point contact where a point force is applied at the closest
point between two beams [18–20, 40]. Although this theory is attractive from the numerical-
efficiency point of view, it cannot properly describe distributed contacts. To account for this,
some researchers have introduced a line-to-line type contact in the beam contact problems,
mainly by means of the so-called Gauss-point-to-segment method based on the penalty ap-
proach [9, 23]. Some attempts to combine the two methods also exist [24], where one or
the other is chosen depending on the size of an angle formed by the two beams at a contact
point. The attractiveness of the mortar method is in the efficient handling of both point-like
and distributed contacts.

The first application of the mortar method in static frictionless beam-to-beam contact
was proposed in [7]. The authors show that such a continuous non-smooth formulation is
appropriate also for thin beam-like structures where the assumption of rigid cross-sections
is in place. This assumption has deterred some authors, [23], from non-smooth contact me-
chanics, as it is somehow contradictory to the nature of contact, where some deformation
is expected, and thus has directed the focus of research on the penalty method. Neverthe-
less, the authors in [7] adopt an augmented-Lagrangian approach and validate the method
with an adapted version of the patch test and a twisting example for the distributed contact.
The point-to-point contact was validated using a cantilever bending test. These tests demon-
strate that the method is stable and convergent and yields results comparable to the penalty
method.

This paper presents an alternative mortar method formulation for the analysis of a static
frictionless beam-to-beam contact based on the Lagrange-multipliers method. The term
beam-to-beam contact is meant here in the broadest sense possible, as it includes beam-
to-rigid-surface and self contacts, both of which are tested in numerical examples.

Section 2 outlines the geometrically exact beam theory. Section 3 discusses contact ge-
ometry, kinematics and contact potential. In Sect. 4 we present contact virtual work and
linearization and give details of a numerical implementation. Finally, verification tests from
literature are considered in Sect. 5.

2 Geometrically exact beam theory

As mentioned in the introduction, the geometrically exact beam theory is used to model
beams. A beam is represented through a centreline which connects cross-sections. The rep-
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Fig. 1 Geometry of a beam

resentation, chosen in [31], delegates the centreline to R
3 space and the cross-section ori-

entation to the Lie group SO(3). As illustrated in Fig. 1, centreline position is denoted by
vector x. The rotation matrix R denoting the orientation of the cross-section is assembled
from the spatial orthogonal basis R = [

e1 e2 e3
]
. Both x and R are parametrised by the

arc-length coordinate s and so the entire configuration can be expressed as a single coordi-
nate function.

The geometrically exact beam theory can account for shear deformation as the cross-
section need not be aligned with a tangent at the centreline. However, the cross-section itself
is considered to be rigid. Within this setup, the strain measures for position and rotation are
defined as the difference between the current and the initial deformation

γ = RT x ′ − RT
0 x ′

0 (1)

κ̂ = RT R′ − RT
0 R′

0, (2)

where (·)0 denotes a quantity in the initial configuration and a hat denotes a skew-symmetric
matrix which is an element of the Lie algebra so(3). The strains are in combination with a
linear elastic material law related to the internal forces via material properties matrix

f int = K
{

γ

κ

}
(3)

where K = diag(EA,GA1,GA2,GJt ,EI1,EI2). Balance equations in the weak form are
finally defined as

f ′
int −

[
0 x̂

′

0 0

]T

f int − f ext = 0, (4)

where vector f ext represents a vector of external distributed forces and moments.
Following the Simo & Vu-Quoc formulation [32], a finite element is obtained through a

discretization of the configuration which is an element of the R3 ×SO(3) manifold. A para-
metric centreline function is obtained simply by interpolating the nodal positions. The ro-
tations are not directly interpolated and are updated through interpolated iterative rotation
changes. An element’s order defines the order of the Lagrange polynomial shape functions.
Further details on interpolation are described in Sect. 4.3.

Other discretizations are possible. For comparison, in [7] the authors implement the mor-
tar method on an element based on the first-order Lie group SE(3) interpolation, which
requires quantities expressed in the local frame of reference.

3 Contact geometry and potential

A beam-to-beam contact describes an interaction between two bodies, which can be rep-
resented by the beam theory. In a more general case, these two bodies can be viewed as
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Fig. 2 Geometry of
beam-to-beam contact

segments of one or more beams and in this way refer to both the contact between the two
beams as well as self-contact in either of them. In what follows, these two segments will be
simply referred to as beam (1) and beam (2).

This paper is considering segment-to-segment contacts between beams. These include
(i) point-to-point type contact where the two beams in contact form a large-enough angle
whereby due to the rigid nature of the cross-sections contact-region appears to be a point,
and (ii) a line-to-line type where the contact force is distributed along a larger region which
appears to be a line. The latter case occurs when beams either lean on or twist around each
other. Although there exist specific models for point-to-point contacts only, e.g. [20], the
strength of the mortar method rests in its capacity to model both contact types with the same
algorithm. Some limitations, naturally, exist and they are discussed further in Sect. 5.

Beam geometry follows the geometrically exact beam theory described in Sect. 2. This is
the preferred choice in the literature, [7, 9, 10], although some researchers, e.g. [24], prefer
to use the Kirchhoff theory for thin beams instead, which simplifies the beam formulation
by neglecting the shear deformation. Although the choice influences the numerical results
for thicker beams, it does not usually affect the contact formulation itself because of the
introduced assumptions. A centreline position in the deformed configuration is for each
beam denoted as x(i)(s(i)) for i = 1,2. For more information on the geometrical layout see
Fig. 2.

A contact problem may be defined by the well-known Karush–Kuhn–Tucker (KKT) con-
ditions through λ = −FN :

g ≥ 0 (5a)

−λ ≥ 0 (5b)

λg = 0 (5c)

where g and λ denote the gap and the Lagrange multiplier, respectively, and FN denotes a
contact force. The non-penetration condition (5a) states that there should be no penetration
between the bodies. It is prevented by the appearance of a pair of opposite contact forces at
the point of contact, which results in a positive pressure on each beam (5b). The zero-work
condition (5c) ensures that a contact force appears only if there is a contact and the gap is
zero. These conditions apply to each individual point on the beam’s surface.

In the contact-geometry definition, the shear deformation is neglected, i.e. the cross-
section is assumed to remain perpendicular to the centreline. This assumption, together
with the assumption of circular cross-sections, simplifies the gap function as it now de-
pends solely on the position of the two centrelines. It is justified by the fact that the shear
deformation only marginally changes the distance between the two beams and holds true
for reasonably thin beams. The same assumptions are considered also in most other pub-
lications [7, 10, 23] etc. Some point-to-point models are also extended to the rectangular
cross-section shapes [20]. Line-to-line models also allow such generalization, but have so
far not been implemented due to the added complexity.
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Successful measurement of the gap between beams in a line-to-line model requires a
continuous evaluation of the distance between the centrelines. Such a measurement is most
often interpreted as an orthogonal projection from one beam to the other [7, 9, 23]. The
alternative is proposed in [10], where the distance is measured perpendicularly from the
intermediate geometry constructed as the average of the two centrelines. Geometry in the
mortar contact formulation (Fig. 2) is based on the distinction between the non-mortar (as-
signed to beam (1)) and the mortar side (beam (2)). The two centrelines are connected by
the projection vector v(s(1), s(2)), where, for a given s(1), s(2) is found so that the magnitude
of the projection vector is the shortest. This is performed using the nearest point projection
algorithm, and the solution is thus denoted as s(2)(s(1)) emphasizing the dependence on s(1)

coordinate,1 which in general cannot be explicitly expressed. The projection is defined by
the following pair of vector equations that needs to be solved for s(2)

x(1)(s(1)) = x(2)
(
s(2)(s(1))

)+ v
(
s(1), s(2)(s(1))

)
, (6)

v
(
s(1), s(2)(s(1))

) · x ′(2)
(
s(2)(s(1))

)= 0, (7)

where the prime (·)′ here and throughout the paper denotes the derivative with respect to the
curvilinear coordinate that is referring to the particular beam: x ′(i) = dx(i)/ds(i) for i = 1,2.
For additional details on nearest point projection, see Appendix A.

The non-frictional component of the contact force appears in the direction of the unit nor-
mal vector n(s(1)) which is aligned with the projection vector. The definition of the normal
vector as in the literature [7, 9, 18, 23] is

n(2)
(
s(1)

)= v

‖v‖ . (8)

The gap function is now defined as the distance between the two beam centrelines (6) in the
direction of the normal vector (8), from which the combined beam thickness is subtracted

g
(
s(1)

)= vTn(2) − ρ(1) − ρ(2), (9)

where ρ(1) and ρ(2) the are cross-section radii of each beam, respectively. Since we assume
cross-section to be circular, the radii are constants. We acknowledge that subtracting the
thicknesses directly from the orthogonal distance between centrelines induces some geo-
metrical error, but this is commonly accepted in the literature [7, 9, 10, 23]. This error stems
from the fact that the projection vector is not perpendicular to the non-mortar centreline.
Decreasing the angle between the centreline and the projection vector would increase the
error in the computation, reaching its maximum when the two beams would be oriented
perpendicularly (one piercing the other). Still, we set this issue aside and leave it to future
research.

Contribution of the frictionless contact to the total energy of the system can be defined
by the contact potential [39]

�N =
∫

�c

λgds ≈
∫

�(1)

λgds(1), (10)

in which the true integration domain of the contact potential is the actual contact segment �c ,
where the two surfaces intersect. The distributed normal contact force is acting on both

1While having similar notation, note that explicit s(2)(s(1)) denotes the solution to the nearest point projection
problem, while the independent natural coordinate on beam (2) is denoted by s(2) .
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Fig. 3 Contact discretization: Non-mortar elements are denoted as ni and mortar elements as mi . The inte-
gration point A has two candidates for a mortar element partners as a result of the orthogonal projection of
mortar elements m1 and m3. Among these, m3 is selected based on the projection vector magnitude ||v||.
Integration point B has a different mortar element as a partner although it belongs to the same contact element

beams as an interaction force pair, making it equal and opposite on both sides. As such, it
can be fully defined by the Lagrange-multiplier field λ on the non-mortar-side beam. So
we approximate it by the centreline of the non-mortar-side beam �(1). The contact poten-
tial allows an elegant transition into the virtual work, which is the usual starting point of
formulations [7, 9, 23]. In these references, the integration domain varies slightly. In [7],
the authors compute the actual boundaries of the contact to determine the integration do-
main. This is not strictly necessary, since the contribution of virtual contact work outside
the contact domain can be dismissed according to the contact constraints. The numerical
implications of this choice are further discussed in Sect. 4.1.

4 Contact element

4.1 Weak form of contact potential

The contact potential integral (10) is approximated by an existing discretization of the non-
mortar-side beam (1) into non-mortar-side beam-elements (non-mortar elements) and con-
tact elements, see Fig. 3. A contact element can be regarded as a parasitic finite element,
attached to a non-mortar element and sharing its displacement field. It features its own
Lagrange-multiplier field. The integral needs not include all non-mortar elements, but an
appropriately large subset Q must be selected. All non-mortar elements prone to contact
must be included in this subset. The discretized contact potential is

�N ≈
∑

e∈Q

�e
N, (11)

�e
N =

∫ Le

0
λegedse, (12)

where Le is the initial length of the non-mortar element e. To simplify the notation, the
index e, denoting a particular non-mortar element, will from now on be omitted on the
right-hand side. This agrees with the interpretation in which, after discretization, each beam
element may be viewed as an individual beam in terms of the contact. It allows to reduce
the number of contact elements if the contact location can be predicted in advance. It is
also a simpler alternative to the computation of integration boundaries in [7] and integration
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segments in [23]. The drawback is that the contact discretization depends on the beam dis-
cretization, which may be unsuitable for very long beam elements relative to their contact-
region size.

Remark 1 As the non-mortar subset Q can change between load steps, advanced algorithms
can be employed to include the optimal number of elements. For the simple numerical ex-
amples presented in this paper, an initial guess with a constant subset suffices.

Remark 2 Although it is not explicitly denoted, the integration is performed numerically us-
ing the Gauss-quadrature rule. Integrating over the entire element therefore might slightly
increase the numerical integration error, however, we argue that it greatly simplifies the al-
gorithm, as there is no need to compute boundaries and the Jacobian, as in [7], but simply
integrate over the initial length of the beam. In [23] in penalty potential, the authors intro-
duce integration segments to decouple beam discretization from contact discretization. Our
argument is that with the Lagrange-multiplier method this is not strictly necessary as the
large number of integration points is not essential. The number of integration points indeed
depends on the shape of the gap function, which is further discussed in Sect. 5.

The variation of the contact potential (12) is

δ�e
N =

∫ L(1)

0
(λδg + δλg)ds(1), (13)

where the first and the second terms are associated with the virtual contact work and the
weak form of the non-penetration condition, respectively. The enforcement of the non-
penetration condition is described in Sect. 4.6.

The variation of the projection vector is obtained from (6)

δv = δx(1) − δx(2) − x ′(2)δs(1). (14)

Remark 3 Variation of the displacement field on the mortar side is affected by varying the
field itself, but also by varying displacement field on the non-mortar side. This is because
the corresponding mortar side point is determined through the orthogonal projection. Its
variation is thus in total written as δx(2)(s(1)) = δx(2)(s(2)) + x ′(2)δs(1).

The variation of the normal vector follows from (8)

δn(2) = − 1

‖v‖
(
n̂(2)

)2
δv, (15)

where the hat on a vector denotes a skew-symmetric matrix representing a cross-product
operator (̂ab = a × b for a, b ∈ R

3). The variation of the gap function required in (13) is
obtained by varying (9) which with the help of (14) and (15) yields

δg = δvTn(2) + vTδn(2)

= (
δx(1) − δx(2)

)T
n(2). (16)
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Using the result of the gap variation (16), the variation of the contact potential (13) can be
finally written as

δ�e
N =

∫ L(1)

0

(
δx(1)T

n(2)λ + δλg
)

ds(1)

︸ ︷︷ ︸
{
δ�e

N

}(1)

−
∫ L(1)

0
δx(2)T

n(2)λds(1).

︸ ︷︷ ︸
{
δ�e

N

}(2)

(17)

4.2 Consistent linearization

We start the linearization from equation (13) rather than the expanded form (17). For a
consistent linearization, both the virtual work and the weak non-penetration condition must
be considered

�
(
δ�e

N

)=
∫ L(1)

0
(�λδg + λ�(δg) + δλ�g)ds(1). (18)

Linearization of the projection vector (6) and the normal vector (8) is the same as in (14)
and (15)

�v = �x(1) − �x(2) − x ′(2)�s(1), (19)

�n(2) = − 1

‖v‖
(
n̂(2)

)2
�v. (20)

The linearization of the gap function (9) then takes the same form as its variation (16)

�g = n(2)T (
�x(1) − �x(2)

)
. (21)

The term �s(1) from (19) is obtained by linearizing the orthogonality condition (7)

(
�x(1) − �x(2) − x ′(2)�s(1)

)T
x ′(2) + vT

(
�x ′(2) + x ′′(2)�s(1)

)= 0,

from where �s(1) can be extracted as

�s(1) = 1

Sc
x ′(2)T (

�x(1) − �x(2)
)+ 1

Sc
vT�x ′(2), (22)

where

Sc = x ′(2)T
x ′(2) − vTx ′′(2).

The variation of the gap function (16) can now be linearized using the previously obtained
results for the linearization of the projection vector (19) and the normal (20) as

�(δg) = −δx ′(2)T
n(2)�s(1) + (

δx(1) − δx(2)
)T

�n(2)

= −(δx(1) − δx(2)
)T 1

‖v‖
[(

n̂(2)
)2 + 1

Sc

x ′(2)x ′(2)T
](

�x(1) − �x(2)
)

− (
δx(1) − δx(2)

)T 1

Sc

x ′(2)n(2)T
�x ′(2)
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− δx ′(2)T 1

Sc

n(2)x ′(2)T (
�x(1) − �x(2)

)

− δx ′(2)T 1

Sc

n(2)vT�x ′(2). (23)

The final expression for the linearization of the virtual contact work is presented in Ap-
pendix B.

4.3 Interpolation

The interpolation on the elements follows the standard finite-element approach using the
shape functions. The additional degrees of freedom for the Lagrange-multiplier field need
not to be attached to the existing beam nodes. This allows for a different interpolation order
of the displacement and the Lagrange-multiplier field. In the following, however, we assume
for the sake of simplicity of notation in the equations that the nodes do actually coincide.
A general case with a reduced order of interpolation has also been implemented, analysed
and discussed in Sect. 5.

In [7], the augmented-Lagrangian method is used in which the Lagrange multipliers are
treated as a linear combination of their current value and the gap. This introduces new nu-
merical constants (augmentation parameters) which influence the rate of convergence of the
required iterative process to determine the equilibrium solution. Although the Lagrange-
multiplier method and augmented-Lagrangian method are expected to acquire similar re-
sults, each method follows its own convergence path. Studies on solid elements [13] have
found that both require a comparable computation cost.

Nodes connected to the selected elements are then supplied with an additional degree of
freedom for the Lagrange multiplier. The nodal values of the displacement and the Lagrange-
multiplier field are then assembled in a common matrix

X(i) =
[
X

(i)

1 X
(i)

2 . . . X(i)

N
(i)
nodes

]
, (24)

� =
[
�1 �2 . . . �

N
(i)
nodes

]
, (25)

where i ∈ {1,2} denotes a beam, while the element number is, again, omitted.
The Lagrange-multiplier field is chosen to be interpolated using the Lagrange polyno-

mials �(1)(s(1)) = {
	1(s

(1)) 	2(s
(1)) . . .

}T
, while the centreline position interpolation

N (i)(s(i)) = {
N1(s

(i)) N2(s
(1)) . . .

}T
is inherited from the beam element

x(i)
(
s(i)
)≈ X(i)N (i)

(
s(i)
)
, (26a)

λ
(
s(1)

)≈ ��(1)
(
s(1)

)
, (26b)

where i ∈ {1,2} again denotes a beam. In the case of the Simo & Vu-Quoc element [32]
used in the present study, the shape functions N (i) are also Lagrange polynomials. Some
studies concerning with point-to-point friction implement the Hermitian interpolation [19],
which is C1 continuous. In [7], the SE(3) interpolation developed by [34] is used.

Inserting the interpolation (26a), (26b) into the variation of the contact potential (17)
results in the residual force vector contribution from the contact for both beams. The inte-
grals in the formulation are computed using the Gauss quadrature rule so that all integrated
quantities are evaluated only at the integration points s(1)

gj
for j ∈ {1,2, . . .NGauss}. Note
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that quantities like shape functions N (2), which are parametrised on the mortar side must
be evaluated at the position obtained from the solution of the nearest point projection, i.e.
s(2)(s(1)

gj
).

Because of discretization, an appropriate mortar element must be selected for each inte-
gration point for the evaluation of the contact geometry, see Fig. 3. Maintaining the same
mortar element during the Newton–Raphson algorithm is a prerequisite for its second-order
convergence rate due to the piece-wise definition of the centreline across different elements.
Mortar elements are selected for each integration point on the contact element at the begin-
ning of each Newton–Raphson loop. For a particular integration point, a mortar element is
chosen from a set of potential mortar elements. This set must in general include all mortar
elements and can prove to be quite numerically demanding. For specific cases, a subset only
in the neighbourhood of the contact element in question can be considered. In the present
study, this subset was selected manually for each example depending on the possible con-
tact positions. Generally, advanced algorithms for contact detection exist to select an optimal
number of mortar elements, e.g. [38]. For all selected mortar elements, the nearest point pro-
jection must be computed at the beginning of each contact loop (see Sect. 4.6). From this,
the closest mortar element with the projection point s(2) value within its domain is selected
as the mortar-element partner for the particular contact element integration point.

A contribution from an integration point without a converged projection is neglected,
which is discussed in more detail in Sect. 4.7.

4.4 Residual vector

Combining equations (16) and (17) with (26a), (26b) leads to the discrete form of the vari-
ation of the contact potential. It can be written in vector notation for each node i on a
non-mortar element as

{
δ�e

N

}(1)

i
=
{

δX
(1)
i

δ�
(1)
i

}T {
R

(1)
c,i

R
(1)

kkt,i

}
, (27)

from which the residual force vector contribution from contact follows as

R
(1)
c,i =

∫ L(1)

0
N

(1)
i λn(2)ds(1), (28)

R
(1)

kkt,i =
∫ L(1)

0
	

(1)
i gds(1), (29)

where n and g are the contact unit normal defined in (8) and the gap function defined in
(9), respectively. All quantities with index i refer to the node for which the residual vector is
computed. Ni thus refers to the appropriate shape function from (26a), (26b). The Lagrange-
multiplier field λ is evaluated using equations (26a), (26b).

Similarly, for each node i on a mortar element it can be written as

{
δ�e

N

}(2)

i
= {

δX
(2)
i

}T {
R

(2)
c,i

}
(30)

from which the residual force vector contribution from contact follows as

R
(2)
c,i =

∫ L(1)

0
−Ñ

(2)
i λn(2)ds(1). (31)
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All integrated quantities are functions of the non-mortar side parameter s(1), except for the
shape functions N (2) on the mortar side, which need to be mapped using

Ñ
(2) (

s(1)
)= N (2)

(
s(2)(s(1))

)
. (32)

4.5 Tangent matrix

The tangent matrix is obtained from (16), (18), (21) and (23) along with (26a), (26b). The
contributions consist of combinations of mortar and non-mortar element nodes, resulting in
four different pairings. A pair of nodes i and j on the non-mortar element results in

[
�
(
δ�e

N

)](1,1)

ij
=
{

δX
(1)
i

δ�
(1)
i

}T

K(1,1)
ij

{
�X

(1)
j

��
(1)
j

}

, (33)

from where the tangent matrix contribution follows as

K(1,1)
ij =

∫ L(1)

0

[
−N

(1)
i AN

(1)
j N

(1)
i n(2)	

(1)
j

	
(1)
i n(2)T

N
(1)
j 0

]

ds(1), (34)

where

A = λ
1

‖v‖
[(

n̂(2)
)2 + 1

Sc

x ′(2)x ′(2)T
]

. (35)

Pairing a node i on the non-mortar element and a node j on the mortar element results in

[
�
(
δ�e

N

)](1,2)

ij
=
{

δX
(1)
i

δ�
(1)
i

}T

K(1,2)
ij

{
�X

(2)
j

}
, (36)

from where the tangent matrix contribution follows as

K(1,2)
ij =

∫ L(1)

0

[
N

(1)
i AÑ

(2)
j − N

(1)
i BÑ

′(2)
j

−	
(1)
i n(2)T

Ñ
(2)
j

]

ds(1), (37)

where

B = λ
1

Sc

x ′(2)n(2)T
. (38)

Pairing a node i on the mortar element and a node j on the non-mortar element results in

[
�
(
δ�e

N

)](2,1)

ij
= {

δX
(2)
i

}T
K(2,1)

ij

{
�X

(1)
j

��
(1)
j

}

, (39)

from where the tangent matrix contribution follows as

K(2,1)
ij =

∫ L(1)

0

[
Ñ

(2)
i AN

(1)
j − Ñ

′(2)
i BTN

(1)
j −Ñ

(2)
i n(2)	

(1)
j

]
ds(1). (40)
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Finally, a pair of nodes i and j on the mortar element results in

[
�
(
δ�e

N

)](2,2)

ij
= {

δX
(2)
i

}T
K(2,2)

ij

{
�X

(2)
j

}
, (41)

from where the tangent matrix contribution follows as

K(2,2)
ij =

∫ L(1)

0

[
−Ñ

(2)
i AÑ

(2)
j + Ñ

(2)
i BÑ

′(2)
j + Ñ

′(2)
i BTÑ

(2)
j − Ñ

′(2)
i CÑ

′(2)
j

]
ds(1), (42)

where

C = λ
1

Sc

n(2)v(2)T
. (43)

4.6 Enforcing contact condition

Non-smooth contact methods also require an appropriate algorithm for determining the sta-
tus of each Lagrange multiplier, since only some multipliers actively participate in the con-
tact and contribute to the contact force. In this paper, the active-set strategy is used, which
requires a secondary iterative loop. It separates all Lagrange-multipliers into an active and an
inactive set. The inactive nodes have the Lagrange multiplier set to zero and its respected de-
gree of freedom disabled, while the active nodes can have the Lagrange multiplier with any
real value and its respected degree of freedom enabled. Based on the configuration of beams
after the Newton–Raphson loop, the sets are re-evaluated using the contact constraints be-
low to reflect the current configuration. A new contact iteration is started if the sets change.
Since this process is non-smooth and cannot be linearized, it represents a bottleneck in the
overall convergence rate of the method. The inner Newton–Raphson iterative loop, solving
the balance equations, has a second-order convergence rate provided that the full tangent
matrix is used as described. The outer contact loop only experiences a first-order conver-
gence rate. The overall convergence rate of the method is thus reduced due to the contact
non-linearities in the system.

To avoid the secondary loop for determination of the contact conditions, the authors in [7]
utilise a semi-smooth Newton scheme, akin to [14]. As emphasised by the authors in [14],
such an alternative algorithm does not change the convergence rate and is expected to be
equivalent to the method employed here. Nevertheless, a comparison in convergence of the
two methods is undertaken in Sect. 5, Examples 2 and 4.

A more detailed description of the active-set strategy follows. All non-mortar nodes in
the initial configuration are inactive. At the beginning of each Newton–Raphson loop, the
contact conditions are checked for each non-mortar node thus determining the status of each
node.

For an inactive node p to become active, the non-penetration condition must fail. The
idea behind the mortar method is to transform a strong, point-wise non-penetration condi-
tion (5a) into a weak form and integrate it along the non-mortar elements by taking into
consideration all (both) elements e that are connected to node p

∑

{e∈Q:p∈e}

∫ L(1,e)

0
ge	e

pds(1,e) < 0. (44)

For an active node p to become inactive, the positive pressure condition (5b) must fail. It
is enforced point-wise by checking the nodal values of the Lagrange multipliers against the
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Fig. 4 Patch test: layout

condition

−λp < 0. (45)

The zero-work condition (5c) is guaranteed by the use of the active and inactive sets of
nodes.

4.7 Integration points without projection

As already mentioned in Sect. 3, the integrals are evaluated only in the region of contact.
This region is approximated by the non-mortar element centreline. The boundaries are en-
forced by the active-set strategy discussed in the previous Sect. 4.6. However, this approx-
imation fails if the gap function cannot be evaluated, for example, when an element is par-
tially extended beyond the mortar side. In this case, the projection of an integration point on
a non-mortar element to a mortar side does not converge or it is not within the domain of
any of the mortar elements. The contribution of such an integration point is neglected as it
is reasonable to expect that it does not contribute to the virtual contact work.

5 Numerical examples

The presented numerical examples are run using the research code developed in Python,
which is available online [35]. The geometrically exact beam theory [32] is used for the
beam elements. The examples are selected to test different aspects of the contact formulation
and demonstrate a broad field of possible applications. The tests are compared to the study
of Meier et al. [23], where they implement a penalty method for a line-to-line contact, and
Bosten et al. [7], where a mortar method with augmented-Lagrangian approach is used.
Both studies are interesting for comparison because, together with the present study, they
present the three main versions of the numerical algorithm for solving a line-to-line contact
problem.

Example 1 (Patch test) This test was proposed by Meier et al. [23] and is shown in Fig. 4.
A static analysis of two beams of different lengths in contact is conducted. Both beams have
the same Young’s modulus E1 = E2 = 109, Poisson’s ratio ν1 = ν2 = 0.3 and cross-section
radius ρ(1) = ρ(2) = 0.005. The top beam is designated to be non-mortar and consists of two
linear elements. Each element of the top beam has a length of 0.4. The bottom beam consists
of three elements of length 0.9, 0.3 and 0.8. In the initial configuration, the beams are not in
contact. The top beam has its left end controlled via a displacement along the x axis, while
all of the bottom beam’s degrees of freedom are fixed, making it completely rigid. Then, in
a single time step, the top beam is pressed against the bottom one by a distributed line force
p = 1.0. Afterwards, in 100 equal load steps, the top beam is moved rightwards for a total
displacement of U0 = 1.001.

The exact solution of this problem is trivial, i.e. the gap must remain equal to zero
throughout the analysis. The numerical solution of the problem is presented in Fig. 5. The
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Fig. 5 Patch test: gap error with
respect to load step

gap error is computed as the norm of all computed values of the gap in a converged solu-
tion and is constant with value 3.47 × 10−18. The non-penetration condition is thus fulfilled
within the numerical machine precision and the validity of the method is thus established.
Due to the weak fulfilment of the non-penetration condition, sliding over the elements does
not lead to any loss of convergence. All Newton–Raphson loops require a single iteration
to converge. The number of contact integration points used in the test is 2, however, larger
values have been tested as well yielding the same result.

Compared to [23], where the penalty method is used, this presents a considerable im-
provement. With the penalty method, some penetration proportional to the chosen parame-
ters is expected. Secondly, the numerical results in the original study are dependent on the
number of integration points. Even with increasing the number of the integration points, the
solution does not converge to the expected solution of −0.002 (a solution expected for the
chosen penalty parameters). Furthermore, the gap varies with load steps due to sliding. Both
problems were averted with the mortar method. We can see in Fig. 5 that the gap is stable
and constant, with load steps and sliding appearing to have no effect on the result. The exact
solution is reached with full integration, that is with 2 Gauss points.

In [7] a simplified version of this test was studied. Two beams of equal length but different
discretization are pressed together. They arrive to the same conclusion that the gap equals
to zero within the machine precision and that the system converges in a single Newton–
Raphson iteration. The effects of the discontinuities due to sliding were not tested in [7].

Example 2 (Cantilever) This is an example proposed by Bosten et al. in [7]. A cantilever
beam of the length 0.3 with a circular cross-section with the radius ρ = 0.001 is positioned
above a rigid body. Between them is a gap H = 0.0005. The beam has the following material
properties: axial stiffness EA = 6.28 × 105, shear stiffness GA = 0.242 × 105, torsional
stiffness GIt = 0.12 and bending stiffness EI = 0.16. The beam is pressed towards the
rigid body by a distributed load p = 10. The elements used in this example use the same
order of interpolation for displacement and the Lagrange multipliers.

In Fig. 6 we can see how the results for the final contact force distribution from [7] com-
pare to the present study. The beam is discretized using 64 linear or quadratic elements and
the full load is applied in 240 steps. The main difference originates from the selection of the
beam element. In [7] the authors use SE(3) beam elements. Our first-order elements have a
significantly different distribution of the Lagrange-multiplier field, while our second-order
elements produce comparable results to the reference SE(3) solution. It is also interesting
to compare how the second-order interpolation of the Lagrange multipliers affects the os-
cillations at the boundary of the contact region. In [7], the authors test only the first-order
interpolation of the Lagrange multipliers, which leads to smaller oscillations compared to
the second-order interpolation. Also an interesting artefact of the second-order interpolation
is a partially negative Lagrange-multiplier field, which is permitted by the constraint en-
forcement, since only the nodal values are checked. The differences are not attributed to the
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Fig. 6 Cantilever: final
Lagrange-multiplier field for
different elements

Fig. 7 Cantilever: final contact
force convergence for different
elements

difference in solution technique (augmented-Lagrangian vs Lagrange-multipliers method),
but to the difference in elements and interpolation of the Lagrange-multiplier field.

In Fig. 7, spatial convergence of both elements compared to the reference solution is pre-
sented. Convergence speed is attributed to the interpolation order of the Lagrange-multiplier
field. The present linear and SE(3) elements both exhibit slower convergence than does the
present quadratic element with the second-order Lagrange-multiplier interpolation.

Figure 8 shows on a logarithmic scale how the gap is distributed for both orders of el-
ements. The differences between them are small, but one can observe that the value of the
gap function is consistently closer to zero in the contact region with the second-order inter-
polation.

The energy evolution for the example with 64 linear elements is shown in Fig. 9. The
energy difference Wext − EP is relatively small for the entire duration of the simulation. In
Fig. 10 we can observe more closely the first 10 steps. The contact happens after step 2 which
is visible in the change of Wext − EP which is now different from zero. This behaviour is
expected in non-smooth mechanics. The energy difference changes for the entire duration of
the contact, as is visible in Fig. 11. There we can also see, that the second-order interpolation
has a smaller difference in Wext − EP .

Median convergence in two iterations is observed as in [7]. The average number of
Newton–Raphson iterations is 1.3, but there are also 1.6 secondary contact loop iterations
which brings to a total of 2.1 iterations per time step.
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Fig. 8 Cantilever: final gap for
64 lin. and quad. elements

Fig. 9 Cantilever: energies for
entire simulation

Fig. 10 Cantilever: energies for
only first ten steps

Example 3 (Rotating beams) Two cantilever beams are placed one above the other at a cer-
tain angle. The bottom beam is collinear with the x-axis and completely fixed. The top
beam lays initially in the plane x-y at an angle α around the z axis like shown in Fig. 12.
The beams are initially touching, so if the position of the top beam on z-axis is at H , the
contact radius of each beam is ρ = H/2. The displacement of the free end of the top beam
is free only in the z-axis. The rotations of the free end are not constrained. The free end is
loaded with a point force in the z-axis. The appropriate size of the point force is such that if
the contact were not considered, the two centrelines would intersect in the middle as shown
in Fig. 13. The size of the force is computed using the same setup only without contact
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Fig. 11 Cantilever: total energy
in comparison for different
interpolation

Fig. 12 Rotating beams

Fig. 13 Rotating beams:
maximum penetration

constraints. This ensures the maximum possible penetration for a given setup. The material
parameters are: EA = GA = 1 and GI = EI = 10.

Each beam consists of only a single linear element with 3 integration points, which re-
duces the total number of degrees of freedom to 5 (4 for the movement of the only free node
and 1 for its Lagrange multiplier). The contact radius is varied in order to determine the
smallest possible ratio between the thickness of an element and its length, at which contact
is still detectable by the mortar method.

The test was first analysed analytically. Evaluating equation (9) for the deformed config-
uration without contact detection, as shown in Fig. 13, yields the following gap function

g(stop) =
√

(1 − 2stop)2(H 2 + sin2(α)). (46)

This gap is integrated according to (44) for the free node giving the following expression

1

4

(
−2H +

√
H 2 + sin2(α)

)
< 0. (47)
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Fig. 14 Rotating beams: minimal
radius still to detect contact

When this expression equals zero, the condition is just before switching the Lagrange-
multiplier degree of freedom. Solved for H , it defines the limit at which contact is detected
for a given configuration, which is

H = sin(α)√
3

. (48)

The test was also conducted numerically for values of α from 0 to π with a step π/60 and
H for values from 0.06 to 1.99 with a step 0.06. This produces a matrix of results which
can be seen in Fig. 14. A unified measure (ρ(1) + ρ(2))/L(1) is introduced, where index
(1) is associated with the non-mortar element (blue in Fig. 12) and (2) with the mortar
element (orange in the same figure). Successfully converged results with a contact detected
are coloured green, while the rest remains white. Some results can converge to an unphysical
solution, but this can be averted by introducing the load in several load steps and is as such
not a concern of this test case. The contour is cross-plotted with the analytical solution for
the minimal detectable radius (48). Numerical and analytical results match as expected.

In a general situation, contact can happen anywhere on the element. However, if all nodes
can become active, having the contact point exactly in the middle of the element is weighted
by the shape functions the least and moving it towards some node would result in a quicker
detection of a contact. So, in some special cases, the contact can be detected even with
a smaller ratio of (ρ(1) + ρ(2))/L(1). In general, the worst case scenario must govern the
choice for the size of the elements, which is predicted by this example.

Finally, the convergence of the mortar method for α = π/2 and H = 1 was tested. The
load size is computed as above, but now added in 4 equal steps. Only the meshes with an odd
number of first-order elements were tested to avoid direct nodal contact. The final deformed
configuration for the example using 81 elements is shown in Fig. 15. Lagrange-multiplier
field convergence is presented in Fig. 16. The force distribution converges towards a step
function with some boundary effects. A silhouette of the bottom-beam’s cross section is
overlaid to better illustrate the effective width of the contact. The corresponding gap func-
tions can be seen in Fig. 17. The gap flattens to the same width as observed for the force.
Some penetration is present for coarser meshes.

Example 4 (Twisting of two cantilever beams) Two beams are positioned one above the
other, fixed at one end and rotated around axis x1 at the other using a displacement control
(see Fig. 18) to form a helix-like shape. This test was originally proposed by Meier et al.
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Fig. 15 Rotating beams:
deformed configuration at
α = π/2 with 81 elements

Fig. 16 Rotating beams:
Lagrange-multiplier distribution
for α = π/2 for a different
number of elements

Fig. 17 Rotating beams: gap
distribution for α = π/2 for a
different number of elements

[23], where Kirchhoff–Love theory was used to describe the beam element. Here Simo–
Reissner beam elements were used and in order to maintain convergence due to large twist-
ing strains, slightly different material parameters are used compared to the original test.

Both beams are equal in terms of material, geometry and finite element discretization.
The material is linear elastic with Young’s modulus E = 109 and Poisson’s ratio ν = 0.3.
The geometry is shown in Fig. 18. The length of each beam is 5 and they are initially
touching, making the distance between their centrelines H = 0.02. The cross-sections are
circular with radius ρ = 0.01. These beams are effectively very long and thin, as can be
properly seen in Fig. 19. The angular increments are such that a full circle is completed in
8 load steps. Before the twisting is applied, the beams are pre-tensioned in a separate load
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Fig. 18 Twisting of two
cantilever beams: layout

Fig. 19 Twisting: final deformed
shape

Fig. 20 Twisting: convergence of
the final contact force with
respect to the number of elements
per beam

step with an axial displacement of 0.049647. Second-order elements are used in both beams.
They are discretised with 8, 16, 32 and 64 elements, each with a varying number of contact
integration points.

The convergence of the final contact force distribution is shown in Fig. 20. An alternating
solution can be identified with the overall amplitude becoming smaller as the number of
elements increases. The contact force is converging towards a constant value of around −50
with the clear boundary effects explained later. The integration error has been tested using 8
elements in combination with 2, 3 and 8 contact integration points on each element. While
all solutions successfully converge, it is necessary to use at least the number of nodes on an
element for the number of contact integration points to eliminate significant integration error
(see Fig. 21). Higher order integration might also be necessary if strong C1 discontinuities
are present on the mortar side. This, however, has not been encountered in this example.

Finally, the reduced-order interpolation of the Lagrange-multiplier field has been also
tested. A comparison has been made between the linear and the quadratic interpolation,
both in combination with 16 quadratic beam elements. The results are given in Figs. 22
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Fig. 21 Twisting: convergence of
the final contact force with
respect to the number of
integration points per element

Fig. 22 Twisting: final gap
function for second-order beam
elements with lin. and quad.
interpolation of the
Lagrange-multiplier field

Fig. 23 Twisting: final contact
force on second-order beam
elements with lin. and quad.
interpolation of the
Lagrange-multiplier field

and 23. Interestingly, it can be seen that the fluctuations in the contact force have been
significantly reduced while the error in the gap approximation has reciprocally increased.
These fluctuations are actually the same as the ones observed in Fig. 6 and are a consequence
of the relatively high curvature present at the boundary of the contact. In order to reduce the
internal bending forces, the radius of curvature of the beam is increased and thus presses
harder on the other beam in contact. Due to the rigid nature of the cross-section it results
in unphysical oscillations in the contact force. As such, these fluctuation are inherent to the
beam theory independent on the type of formulation that is used. In [23], the authors argue
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Fig. 24 Twisting: integrated gap
using second-order elements
compared to SE(3) elements [7]

Fig. 25 Twisting:
Lagrange-multipliers using
second-order elements compared
to SE(3) elements [7]

that the penalty approach is more appropriate for such cases, as it numerically allows for
some penetration, simulating the deformability of the cross-section. However, the introduced
penalty parameter affects the solution, while not being a mechanical property of the system
and is as such problematic to determine appropriately. Also, a similar boundary effect is
present in their formulation with the penalty method, although, the distribution of the contact
force is significantly smoother. Clearly, there is a trade-off between the penetration and the
oscillations of the force. These oscillations do not seem to affect the convergence of the
method, which is the same observation as in [7], where a similar study has been undertaken.

A comparative simulation with the definition of this example from [7] was also con-
ducted. Four full turns are applied using 64 quadratic elements. The final integrated gap
comparison can be seen in Fig. 24. As expected, the mortar method fulfils the weighted
gap constraint (44) in both cases. The difference shows in the Lagrange-multiplier field il-
lustrated in Fig. 25, which has a lot less oscillations in [7]. This is attributed to the SE(3)

element, which can interpolate helix-like shape of the centreline much better than the poly-
nomial interpolation used in our elements. Stable oscillations of the force in the most part
of the beam show that this is indeed the converged solution, which is required to force the
beams into the helix-like shape.

Example 5 (Twisting of a ring) A single beam in a shape of a ring is clamped at one end, as
shown in Fig. 26. Diametrically across, it is being twisted by a concentrated moment around
x1 axis. The test is similar to the one proposed by Chamekh et al. [9]. The ring radius
is R = 1, while the circular cross-section radius is ρ = 0.04π . The material parameters
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Fig. 26 Twisting of a ring

Fig. 27 Final deformed shape

Fig. 28 Final gap with respect to
the number of non-mortar
elements

Fig. 29 Final contact force with
respect to the number of
non-mortar elements

are selected in a way to avoid any bifurcation phenomena. The axial stiffness is EA =
2.76461 × 103, the shear stiffness is GA = 1.03924 × 103, the bending stiffness is EI =
2764.52 and the torsional stiffness is GIt = 2078.5. The moment is applied in 14 load steps.
The first 9 load steps increase the moment magnitude by 700, after which the contact is
expected and thus in the following steps the moment increase is reduced to 70. The total
moment load accumulates to 6650. The final deformed shape with 32 second-order elements
is presented in Fig. 27.

First, the ring has been discretised with 8 second-order beam elements. Two cases have
been analysed – test case A, where all 8 beam elements are also non-mortar and test case
B, where only the first half of the elements (4 elements between the fixing point and the
concentrated moment) are non-mortar. No issues arise in any of the two cases and the result-
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Fig. 30 Final gap with respect to
the number of elements

Fig. 31 Final contact force with
respect to the number of elements

ing gap function in Fig. 28 is matching completely in both cases. In test case A, the contact
force in Fig. 29 gets distributed equally between the non-mortar elements on both sides of
the contact and is therefore half the size of the one in test case B.

Second, the convergence of the solution is tested by refining the mesh using 8 and 32
quadratic elements. The gap function evaluated at the integration points can be seen in
Fig. 30. It can be observed that in the case with 8 elements the curve is not defined in
the entire domain, specifically where the gap should be larger. This is due to the divergence
in the nearest point projection algorithm. As the contribution of these integration points is
small, it does not affect the overall solution. Close to the contact, where the gap is smaller,
the results almost match those from the finer mesh. The position of the contact is slightly
shifted, probably due to the larger approximation error of the geometry itself. The contact
force forms a spike that is higher and narrower with increasing number of elements (Fig. 31).
The nature of the beam theory with rigid cross-section would suggest that the expected re-
sult is exactly a point force in the shape of the Dirac delta function. However, due to the
weak character of the non-penetration condition, it is approximated by a distributed force.

Also, due to the weak non-penetration condition employed in the mortar method, it has
been expected from the start that if the ratio between cross-section radius and element length
(ρ(1) + ρ(2))/L(1) is too large, it may pose a problem for contact detection when two beams
intersect perpendicularly. This example has been used to test this property and it is deter-
mined that at least 7 elements are required for contact to be detected, in which case, the ratio
is (ρ(1) + ρ(2))/L(1) = 0.28. This value agrees with Example 3, Fig. 14 for an angle close to
π/4.
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6 Conclusion

An alternative formulation to [7] is proposed for static analysis of beam-to-beam and self
contacts without friction. It is

• based on the Lagrange-multipliers method,
• performs no computation of the integration boundaries,
• may have an arbitrary order of interpolation for Lagrange multipliers field.

While well-known and widely used by the contact-mechanics community when dealing with
solid finite elements, the mortar method has proven to be well suited also for beam appli-
cations, as already shown in [7]. No significant difference was detected in the performance
between the augmented-Lagrangian and Lagrange-multiplier method. The present study fur-
ther shows the applicability of the method to regular R3 × SO(3) manifold by the usage of
the Simo & Vu-Quoc beam element [32], yielding consistent results in terms of contact.
Inferior results can be expected when twisting compared to SE(3) due to the helicoidal in-
terpolation used in those elements. Compared to [7], we have additionally investigated some
properties of the mortar method, specifically the ability to handle a side-to-side contact. It
has been shown analytically and confirmed numerically what are the limits to the contact
radius vs. element length ratio. A different integration scheme compared to [7] is used which
is shown to simplify the formulation while not deteriorating the results. A full tangent matrix
is derived which consistently leads to a second-order convergence in the Newton–Raphson
loop. Additional comparisons to the penalty method from [23] are made, specifically we
analysed the sliding, which has been shown to be more stable than in the penalty method
and twisting, which is more precise in terms of the gap function but has higher oscillations
in the force. The latter do not lead to any loss of convergence, as already discussed in [7].

Additional application with self-contact has shown that the formulation is very robust in
terms of selecting the correct set for the non-mortar elements. Even by selecting all beam
elements, the system does not become over-constrained but instead successfully converges
to the same solution. This might prove useful in cases where the specific nature of contact
cannot be predicted.

Because of the weak fulfilment of the non-penetration condition and a distributed contact
force, a high resemblance with the physical phenomenon of contact is achieved, resulting
in a robust and precise method. For parallel contact cases, the mortar method provides a
solution with evenly distributed contact force that is not influenced by sliding, while the
perpendicular contact cases require an appropriately small ratio between the cross-section
radii and the non-mortar element length. Surprisingly, the mortar method, in contrast to the
penalty method, proves to be rather independent of the number of integration points. Only a
few of them per element are sufficient for all test cases.

These tests prove that the mortar method is not only an effective formulation for beam-
to-beam contact but also provides a lot of space for improvement and future research. In
the future, our research will focus on making the formulation independent of the choice of
mortar/non-mortar side.

Appendix A: Nearest point projection

The shortest distance from a curve C to a point P (Fig. 32) is the magnitude of the vector
perpendicular to the curve. The curve could potentially have multiple points r i , where the
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Fig. 32 Nearest point projection

normal is going through P , however, this algorithm is restricted to finding the local min-
imum close to the initial guess. The curve is defined parametrically by the coordinate s

and its position is denoted by r . The point P has the position vector denoted by rP . The
following set of equations needs to be solved

f (x) = f

({
v

s

})
=
{

r(s) + v

r ′(s)vT

}
, (49)

f (xn) =
{

rP

0

}
, (50)

where x denotes the combined vector of unknowns and xn its converged value satisfying
the equation (50). Since the system is nonlinear for non-straight curves C, Newton–Raphson
iterative algorithm is employed

f (xn) − f (xi ) = ∇f (xi )�xi (51)

with the residual vector

f (xn) − f (xi ) =
{

rP

0

}
−
{

r(s) + v

r ′(s)Tv

}
(52)

and the tangent matrix

∇f (xi ) =
[

I r ′(s)
r ′(s)T r ′′(s)Tv

]
, (53)

where I is the identity matrix of rank 3.

Appendix B: Tangent matrix

Final expression for the linearization of the virtual contact work following from (16), (18),
(21) and (23)

�
(
δ�e

N

)=
∫ L(1)

0

{

δx(1)T
n(2)�λ + δλn(2)T

�x(1)

− δx(1)T λ

‖v‖
[(

n̂(2)
)2 + 1

Sc

x ′(2)x ′(2)T
]

�x(1)

}

ds(1)

+
∫ L(1)

0

{

δx(1)T λ

‖v‖
[(

n̂(2)
)2 + 1

Sc

x ′(2)x ′(2)T
]

�x(2)

− δx(1)T λ

Sc

x ′(2)n(2)T
�x ′(2) − δλn(2)T

�x(2)

}

ds(1)
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+
∫ L(1)

0

{

δx(2)T λ

‖v‖
[
(
n̂(2)

)2 + 1

Sc

x ′(2)x ′(2)T
]

�x(1)

− δx(2)T
n(2)�λ − δx ′(2)T λ

Sc

n(2)x ′(2)T
�x(1)

}

ds(1)

+
∫ L(1)

0

{

− δx(2)T λ

‖v‖
[(

n̂(2)
)2 + 1

Sc

x ′(2)x ′(2)T
]

�x(2)

+ δx(2)T λ

Sc

x ′(2)n(2)T
�x ′(2) + δx ′(2)T λ

Sc

n(2)x ′(2)T
�x(2)

− δx ′(2)T λ

Sc

n(2)vT�x ′(2)

}

ds(1). (54)

This expression can be condensed by using the following substitutions

A = λ
1

‖v‖
[
(
n̂(2)

)2 + 1

Sc

x ′(2)x ′(2)T
]

(55)

B = λ
1

Sc

x ′(2)n(2)T
(56)

C = λ
1

Sc

n(2)v(2)T
, (57)

resulting in

�
(
δ�e

N

)

=
∫ L(1)

0

(
δx(1)T

n(2)�λ + δλn(2)T
�x(1) − δx(1)T

A�x(1)
)

ds(1)

+
∫ L(1)

0

(
δx(1)T

A�x(2) − δx(1)T
B�x ′(2) − δλn(2)T

�x(2)
)

ds(1)

+
∫ L(1)

0

(
δx(2)T

A�x(1) − δx(2)T
n(2)�λ − δx ′(2)T

BT�x(1)
)

ds(1)

+
∫ L(1)

0

(
−δx(2)T

A�x(2) + δx(2)T
B�x ′(2) + δx ′(2)T

BT�x(2) − δx ′(2)T
C�x ′(2)

)
ds(1).

(58)

Each row describes the interaction of a different combination of nodes belonging to beam 1
and beam 2. Inserting interpolation functions (26a), (26b) for individual node leads to

�
(
δ�e

N

)
ijkl

=
∫ L(1)

0

(
δX

(1)
i

T
N

(1)
i n(2)��j	

(1)
j + δ�i	

(1)
i n(2)T

�X
(1)
j N

(1)
j

− δX
(1)
i

T
N

(1)
i A�X

(1)
j N

(1)
j

)
ds(1)

+
∫ L(1)

0

(
δX

(1)
i

T
N

(1)
i A�X

(2)
l N

(2)
l − δX

(1)
i

T
N

(1)
i B�X

(2)
l N

′(2)
l
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− δ�i	
(1)
i n(2)T

�X
(2)
l N

(2)
l

)
ds(1)

+
∫ L(1)

0

(
δX

(2)
k

T
N

(2)
k A�X

(1)
j N

(1)
j − δX

(2)
k

T
N

(2)
k n(2)��j	

(1)
j

− δX
(2)
k

T
N

′(2)
k BT�X

(1)
j N

(1)
j

)
ds(1)

+
∫ L(1)

0

(−δX
(2)
k

T
N

(2)
k A�X

(2)
l N

(2)
l + δX

(2)
k

T
N

(2)
k B�X

(2)
l N

′(2)
l

+ δX
(2)
k

T
N

′(2)
k BT�X

(2)
l N

(2)
l − δX

(2)
k

T
N

′(2)
k C�X

(2)
l N

′(2)
l

)
ds(1). (59)

Rewriting this in the matrix form finally reveals Eqs. (33)–(43)

�
(
δ�e

N

)
ijkl

=
{

δX
(1)
i

δ�i

}T ∫ L(1)

0

[
−N

(1)
i AN

(1)
j N

(1)
i n(2)	

(1)
j

	
(1)
i n(2)T

N
(1)
j 0

]

ds(1)

{
�X

(1)
j

��j

}

+
{

δX
(1)
i

δ�i

}T ∫ L(1)

0

[
N

(1)
i AN

(2)
l − N

(1)
i BN

′(2)
l 0

−	
(1)
i n(2)T

N
(2)
l 0

]

ds(1)
{
�X

(2)
l

}

+ {
δX

(2)
k

}T
∫ L(1)

0

[
N

(2)
k AN

(1)
j − N

′(2)
k BTN

(1)
j N

(2)
k n(2)	

(1)
j

0T 0

]
ds(1)

{
�X

(1)
j

��j

}

+ {
δX

(2)
k

}T
∫ L(1)

0

[−N
(2)
k AN

(2)
l + N

(2)
k BN

′(2)
l + N

′(2)
k BTN

(2)
l − N

′(2)
k CN

′(2)
l

]
ds(1)

× {
�X

(2)
l

}
(60)
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