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Abstract

In this doctoral thesis, new three-node �at shell �nite elements for general 3D linear-elastic

analysis of shells with small deformations are developed. These �at shell �nite elements are

formed by joining two independent parts: out-of-plane Mindlin plate bending part and in-plane

membrane part. The displacement-based approach with linked interpolation and the assumed

strain method are employed for the development of new �nite elements. Various e�ective �nite

elements have been developed in the process.

Mindlin plate bending �nite elements presented here are based on the two-node Timoshenko

beam �nite element with problem-dependent cubic linked interpolation. This beam element is

free of shear locking and is capable of returning the exact results for certain load cases, and has

been successfully utilised for Mindlin plate elements in the literature. Without any additional

treatment, plate elements developed in such way may still su�er from shear locking in thin limit

cases. This locking is avoided here by following the assumed strain method.

Membrane �nite elements presented here are utilising rotational (drilling) degrees of freedom

which are linked to the displacement �elds. Physically correct implementation of the rotational

degrees of freedom is achieved by satisfying the classical theory of elasticity de�nition of rotation.

This approach is particularly convenient when used for the in-plane membrane part in the shell

�nite element formulation.

All �nite elements have been subjected to the so-called patch tests and tested on a variety

of standard numerical examples, as well as compared with the �nite elements used in the Fi-

nite Element Analysis Program (FEAP), in addition to other known �nite elements from the

literature.

Keywords: �nite element method, �at shell �nite elements, Mindlin plate elements, membrane

elements with rotational degrees of freedom, linked interpolation, assumed strain method





Saºetak

U ovoj doktorskoj disertaciji razvijeni su novi tro£vorni kona£ni elementi ravnih ljuski za op¢u

3D linearno-elasti£nu analizu ljuski s malim deformacijama. Ovi kona£ni elementi ravnih ljuski

formiraju se spajanjem dvaju neovisnih dijela: dijela od savijanja plo£a Mindlinovog tipa (izvan

ravnine) i membranskog dijela (unutar ravnine). Za razvoj novih kona£nih elemenata kori²ten

je pristup koji se temelji na pomacima uz primjenu vezane interpolacije te metoda usvojenih

deformacija. U tom procesu razvijeni su razni u£inkoviti kona£ni elementi.

Ovdje predstavljeni kona£ni elementi Mindlinovih plo£a temelje se na dvo£vornom Timo-

²enkovom grednom kona£nom elementu s kubnom vezanom interpolacijom koja je ovisna o prob-

lemu. Ovaj gredni element je slobodan od shear locking-a i sposoban je dati to£ne rezultate za

odre�ene slu£ajeve optere¢enja, a uspje²no je kori²ten za elemente Mindlinovih plo£a u litera-

turi. Bez ikakvog dodatnog tretmana, tako razvijeni elementi plo£a mogu i dalje patiti od shear

locking-a u grani£nim slu£ajevima tankih plo£a. Ovdje se taj locking izbjegava slijede¢i metodu

usvojenih deformacija.

Ovdje predstavljeni membranski kona£ni elementi koriste rotacijske stupnjeve slobode koji

su povezani s poljima pomaka. Fizi£ki ispravna implementacija rotacijskih stupnjeva slobode

postiºe se zadovoljavanjem de�nicije rotacije prema klasi£noj teoriji elasti£nosti. Ovaj pristup

je osobito prikladan kada se koristi za membranski dio (unutar ravnine) u formulaciji kona£nog

elementa ljuske.

Svi kona£ni elementi podvrgnuti su takozvanim patch test-ovima i testirani su na raznim

standardnim numeri£kim primjerima, kao i uspore�eni s kona£nim elementima koji se koriste u

Finite Element Analysis Program (FEAP)-u, uz ostale poznate kona£ne elemente iz literature.

Klju£ne rije£i: metoda kona£nih elemenata, kona£ni elementi ravnih ljuski, Mindlinovi elementi

plo£a, membranski elementi s rotacijskim stupnjevima slobode, vezana interpolacija, metoda

usvojenih deformacija
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Chapter 1

Introduction

Plates, shells and membranes are load-bearing structural elements whose one dimension (thick-

ness) is much smaller compared to the other two dimensions. Plates are �at and they primarily

carry forces and moments acting normal to its middle surface, while shells are generally curved

in shape and they carry forces and moments acting both normal and tangential to its middle sur-

face. Plates can be regarded as a special case of �at shells in which in-plane forces and moments

are usually very small, and are therefore neglected, as is the in-plane sti�ness for that matter.

Additionally, membranes can be regarded as shells with no out-of-plane sti�ness. In engineering

practice, membranes are usually considered as thin structural elements designed speci�cally to

carry in-plane forces only.

Since the thickness is much smaller than the other two dimensions, plates, shells and mem-

branes do not need to be analysed as 3D bodies, moreover, that would be quite impractical. In

order to rationalise non 3D analyses, various theories have been developed in which governing

di�erential equations are formulated with respect to the middle surface of these elements. So-

lutions of those governing di�erential equations can only be obtained for a limited number of

boundary and load conditions. Hence, numerous practical problems cannot be solved by classical

methods as they generally do not provide a solution, unlike numerical methods.

Today, with the wide availability of computers and their ever increasing computational power,

numerical methods are of signi�cant importance as they represent a powerful tool for solving

many di�erent problems in areas of mathematics. One numerical method in particular, which

traces its roots back to the early 1960s, has nowadays established its dominance in the engineering

practice, and that is the �nite element method.

The �nite element method is a procedure which yields numerical solution of di�erential
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equations governing a mathematical model that describes a physical problem. Core concept of

the method lies in the discretisation of the mathematical model. The model is divided into

smaller parts (�nite elements) which are interconnected at discrete points (nodes) that contain

unknown parameters of the problem. This process is called mesh generation in a �nite element

analysis. A �nite element is de�ned by a function (or functions) that approximate an unknown

solution within its domain in terms of unknown nodal parameters. A set of algebraic equations

are obtained for each �nite element, which are then assembled into a larger system of equations

that make up the entire discretised model. A �nite element solution is found by minimising the

error of approximation via calculus of variations.

Clearly, the solution accuracy depends on a discretisation of the model. By introducing

simple approximations in a �nite element formulation, solutions of acceptable accuracies are

generally obtained on a �nely discretised model, i.e., the denser the �nite element mesh is, the

more accurate solution is obtained. However, dense �nite element meshes translate into a very

large system of algebraic equations that need to be solved.

For practical problems, a number of these equations can easily reach many thousands, or

even millions, and a solution is desired relatively quickly in most cases. This leads to a certain

compromise in terms of balancing the mathematical description of a physical problem and the

discretisation �neness of the model. In order to optimise the �nite element analysis, in many

cases it is advantageous to improve the approximations within the �nite element formulation.

This particular approach has attracted attention of many researchers to date, and it is one of

the main objectives of this thesis.

A �nite element analysis of plates, shells and membranes translate into �nding a solution in

terms of displacements (and rotations), which are now unknown nodal parameters of the dis-

cretised model. Functions within the �nite elements that approximate the unknown solution,

i.e., displacement (and rotational) �eld(s), are called interpolations and they are usually poly-

nomials. Finite elements are typically of triangular or quadrilateral shape, and they can include

additional nodes inside its domain. A �nite element solution is found via the variational principle

of minimum total potential energy.

Only linear-elastic theories with small deformations are considered within the scope of this

thesis. For plates, there are two widely accepted and used theories: Kirchho� (Kirchho�-Love)

plate theory, also known as the classical plate theory, and Mindlin plate theory, also known as

the �rst-order shear deformation plate theory. These theories also cover out-of-plane mechanics
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of �at shells. In-plane mechanics of �at shells and membranes are described by the classical

theory of plane elasticity.

Kirchho� plate theory is based on an assumption that cross sections remain straight and

normal to the middle surface after deformation. This means that the cross section rotations

are equal to the derivatives of the transverse displacements, which is accurate only for the thin

plate cases. As the plate thickness to span ratio increases, the error of such assumption rapidly

increases as well. This is due to the disregarded shear strains which are getting more and

more pronounced as the thickness to span ratio increases. Mindlin plate theory recognises these

shear strains which makes the theory applicable to moderately thick plate cases as well. As a

consequence, the cross section rotations are now treated as unknown parameters, just like the

transverse displacements.

Plate �nite elements based on Kirchho� plate theory need to satisfy the C1 continuity, i.e.,

interpolations for transverse displacements between adjacent �nite elements need to be continu-

ous in their �rst derivatives (slope continuity). Such requirement is necessary in order to evaluate

the surface integrals that de�ne the �nite element sti�ness, and in which a strain de�nition is as-

sociated with second derivatives of the transverse displacements. If those interpolations are only

C0 continuous, integrated terms may become in�nite. This results in many di�culties regarding

the development of Kirchho� plate �nite elements.

On the other hand, plate �nite elements based on Mindlin plate theory only need to satisfy

the C0 continuity because strain de�nitions are associated with �rst derivatives of transverse

displacements and rotations only. This makes the development of Mindlin plate �nite elements

much easier and less limiting. However, Mindlin plate �nite elements are generally susceptible

to the so-called shear locking which occurs when the plate thickness to span ratio approaches

zero (thin limit cases).

The shear locking is a phenomenon that is characterised by an unrealistically large shear

strains, and consequently, an inaccurate solution which suggests that the plate is much sti�er

than it actually is. To eliminate, or at least to reduce the shear locking, many di�erent methods

have been successfully utilised. One of the methods that has been proven e�ective is an assumed

strain method introduced by Hughes and Tezduyar [1] and MacNeal [2], and another one is a

linked interpolation approach originally suggested by Xu [3], while the term itself was introduced

by Zienkiewicz et al. in Refs. [4,5]. Both of these approaches are utilised here in order to develop

new Mindlin plate �nite elements.
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Classical theory of elasticity is well established and accepted for more than a century. Accord-

ing to the theory, there are two orthogonal displacement �elds in plane elasticity problems which

describe the in-plane �at shell and membrane kinematics. A simple and reliable �nite element for

plane elasticity problems has been found in the early days of the �nite element method. However,

it has also been found that it is not very e�ective in terms of accuracy for general cases, and as

a result of that, dense �nite element meshes are required. Over the years, improvements have

been proposed, many of which introduce rotations as additional unknown parameters, which are

often referred to as drilling rotations or drilling degrees of freedom. Even though such approach

is not actually consistent with the theory, it has proven to be advantageous in the �nite element

application.

New �at shell �nite elements are formed here by joining out-of-plane Mindlin plate bending

part and in-plane membrane part, i.e., Mindlin plate and membrane �nite elements. For instance,

by joining a Kirchho� plate element and a conventional plane elasticity element, a shell element

with three unknown parameters per node is obtained. These parameters are displacements in all

three orthogonal directions of 3D space. Should a Mindlin plate element being joined instead,

two additional unknown parameters, i.e., two orthogonal rotations, would be added on top of the

previous three. This would make for a shell element with �ve unknown parameters per node.

Since a rigid body has six degrees of freedom in 3D space, three orthogonal displacements and

three orthogonal rotations, an additional rotational degree of freedom would naturally complete

the mathematical description of a general 3D shell problem, and that is the drilling rotation from

the membrane �nite element formulation. A shell �nite element with all six degrees of freedom

provides two key advantages over a �ve degrees of freedom element: a global sti�ness matrix

singularity is always avoided and fully compatible connections between shell and other types of

�nite elements are accomplished if drilling rotations represent actual nodal rotations in the �nite

element formulation.

New �nite elements presented here are of triangular shape with nodes being at the vertices

only. Since three non-collinear points (nodes) uniquely de�ne a �at plane, these �nite elements are

�at by default. Curved problems can be adequately represented by a model made up of smaller

�at �nite elements, which is an additional approximation in a �nite element analysis. With

the �nite element mesh re�nement, such approximation becomes more accurate. Additionally,

triangular elements are generally preferred since quadrilaterals are be prone to potential warping

issues.
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Additional information and explanations regarding this topic so far can be found in greater

detail in Refs. [6�13].

A substantial overview of Mindlin plate �nite elements development up to 2015 was given by

Cen and Shang [14]. The authors have presented many di�erent approaches and methods used

throughout the history of Mindlin plate �nite elements development in order to eliminate (or

at least, to reduce) the shear locking and improve the element performance, such as: (selective)

reduced integration [15], discrete Kirchho� theory [16], various assumed strain concepts [1,2,17],

linked interpolation [3�5], hybrid and mixed formulations, etc.

Even though the shear locking can be eliminated on Timoshenko beam �nite elements by using

the linked interpolation, it has been found that the same approach cannot ensure the same for

Mindlin plate �nite elements on its own. For this, one may refer to the work presented by Ribari¢

and Jeleni¢ [18, 19] in which the authors made a comprehensive study of linked interpolation

approach for lowest and higher-order quadrilateral and triangular Mindlin plate �nite elements

by following a displacement-based approach. Regardless, various e�ective three-node Mindlin

plate �nite elements using linked interpolation have been presented where improvements were

sought in terms of utilising additional approaches and methods in order to eliminate the shear

locking and improve the element performance.

Auricchio and Taylor [20] followed a mixed formulation approach, where quadratic linked

interpolation is used, and in which rotational �elds are enriched with internal degrees of freedom

in order to match the so-called count conditions. In addition, shear strains are assumed constant

and are interpolated independently. The element in question is the default three-node plate �nite

element used by the Finite Element Analysis Program (FEAP).

Soh et al. [21] applied constant shear strain expression of the two-node Timoshenko beam

�nite element with problem-dependent cubic linked interpolation along the each of the plate

element side. Rotational �elds are obtained by generalising this beam element's interpolation for

rotations. Chen and Cheung [22] re-constituted shear strains obtained from the same Timoshenko

beam element interpolations in discrete points of the plate element, while the rotational �elds are

obtained in the same manner as in Ref. [21]. Huang et al. [23] also used the same Timoshenko

beam element interpolations to develop a hybrid displacement function �nite element.

For plane elasticity problems, Turner et al. [24] formulated the �rst isoparametric three-node

�nite element known today as the CST (Constant Strain Triangle) element. Due to its simplicity

and reliability, the CST element is still widely employed today, even though its performance is

5



generally not on an desirable level. In order to improve its performance, many researches resorted

to introducing rotations as additional unknown parameters. Although that is not consistent with

the theory since rotations are dependent on displacements, it is not actually against the �nite

element concept. Anyhow, di�culties were encountered in the early attempts of such approach.

One of the main di�culties is linking nodal rotations to the element side displacements, which

is very well explained and illustrated in Ref. [25]. In contrast, this is not a problem for beam or

plate �nite elements.

First successful realisation of introducing rotations as additional unknown parameters was

presented independently by Allman [26] for plane elasticity problems, and by Carpenter et al. [27]

for general shell problems. The authors introduced rotations with the quadratic interpolations of

the displacement �elds in a way known today as the linked interpolation. However, these �nite

elements possess the so-called spurious zero-energy mode, which is an undesirable �nite element

phenomenon. Additionally, the rotational parameters are not representing true rotations at the

nodes of the discretised model. Allman has solved both of these issues later in Ref. [28] by adding

a speci�c cubic level of interpolation to the element formulation. However, that addition has

unfortunately lowered the element performance.

Boutagouga [29] recently made a substantial overview of membrane �nite elements with

rotational degrees of freedom. The author has presented many di�erent approaches and methods

used throughout the history of membrane �nite element development in order to improve the

performance of elements which utilise rotational degrees of freedom, such as: incompatible modes

method [30], the so-called free formulation [25], strain-based approach [31], hybrid and mixed

formulations, etc.

Various membrane �nite elements with drilling rotations have been developed in a way that

the rotations in the element formulation are not actually true rotations at nodes of the discretised

model, but parameters of rotational nature that enrich displacement �elds in a way that increases

the element performance, e.g., membrane �nite elements presented in Refs. [26,32,33]. Since the

rotational �eld on its own has no contribution to the strain energy, those rotational parameters

do not necessarily assume the values of true nodal rotations, but values which would make the

strain energy provided by the displacement �elds, minimal.

However, it is convenient to use a membrane �nite element with true rotational degrees of

freedom in �nite element analyses, especially if such element is the in-plane part of the shell

�nite element formulation. In addition to advantages mentioned previously for general 3D shell
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problems, such element has an inherent ability to carry in-plane moments correctly. Additional

convenience is having values of true rotations at nodes of the discretised model, so if required,

it is not necessary to compute them from displacements as they are given by the �nite element

solution directly. Some membrane �nite elements with true rotational degrees of freedom of

interest are presented in Refs. [28,34�37].

Although many e�ective three-node membrane �nite elements with drilling rotations have

been developed so far, no such element has been found capable of achieving the exact response for

an arbitrary pure bending problem. This is likely due to the di�culties of linking nodal rotations

to the element side, as mentioned previously. In contrast, lowest-order linked interpolation beam

and plate �nite elements have such capacity. More to the point, such element would be of a

major importance in the �nite element analyses [35]; hence, a considerable attention is given to

that in this thesis.

Regarding the thesis itself, an introduction to the theory is given in Chapter 2 where Mindlin

plate theory and classical theory of plane elasticity are brie�y covered, in addition to the basics of

the �nite element procedure. The development and validation of new �nite elements is presented

in Chapters 3-5. Mindlin plate �nite elements are based on the two-node Timoshenko beam �nite

element with problem-dependent cubic linked interpolation. The shear locking phenomenon is

avoided by following the assumed strain method. Membrane �nite elements with rotational

degrees of freedom are developed in a way that the rotational parameters are true rotations, i.e.,

classical theory of elasticity de�nition of rotation is fully satis�ed. Additionally, certain strain

assumptions are made within the element domain in order to improve the performance of one

of the elements, and as for the other, appropriate displacement interpolations for accomplishing

exact response for certain pure bending cases are assumed. Flat shell �nite elements are then

formed by joining Mindlin plate and membrane �nite elements. All developed �nite elements are

subjected to the so-called patch tests and tested on a variety of standard numerical examples, as

well as compared with the �nite elements used in the Finite Element Analysis Program (FEAP),

in addition to other known �nite elements from the literature. Finally, the thesis is concluded in

Chapter 6 which summarises the presented work and �ndings.
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Chapter 2

Theory

2.1 Mindlin plate theory

Mindlin plate theory is applicable to both thin and moderately thick plate cases since it recognises

shear deformations, unlike Kirchho� plate theory. Both of these theories share the following

assumptions:

� the material is homogeneous, isotropic and linear elastic,

� the plate deformations are small,

� the plate is �at in its undeformed state,

� the middle plane of the plate remains unstrained as the plate deforms,

� the plate cross sections remain plane as the plate deforms, and

� the normal stress σz perpendicular to the middle plane of the plate is negligible.

The major di�erence between these two theories is that Mindlin plate theory dismisses the

Kirchho� assumption that the cross sections remain normal to the middle plane of the plate

after deformation. This means that the cross section rotations are not equal to the derivatives

of the transverse displacements, and that is due to the shear strains. For thin plate cases, the

Kirchho� assumption is accurate enough since these shear strains are very small and practically

negligible.

A deformed plate con�guration according to Mindlin plate theory is described for the Carte-

sian coordinate system in terms of the following middle plane parameters: transversal displace-

ments w(x, y) and two global section rotations θx(x, y) and θy(x, y), as shown in Fig. 2.1. The
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displacement �eld inside the entire plate domain is, in respect to the middle plane (z = 0),

assumed as

u(x, y, z) = zθy(x, y), v(x, y, z) = −zθx(x, y) and w(x, y, z) = w(x, y) , (2.1)

where u, v and w are displacements in the x, y and z direction, respectively.

Figure 2.1: Mindlin plate after deformation

Shear strains (γxz, γyz) and curvatures (κx, κy, κxy) can be expressed via the kinematic

equations as γxz

γyz

 =


∂w

∂x
+ θy

∂w

∂y
− θx

 (2.2)

and 
κx

κy

κxy

 =



∂θy
∂x

−∂θx
∂y

∂θy
∂y

− ∂θx
∂x


. (2.3)

Moments (Mx,My,Mxy) and shear stress resultants (Sx, Sy) can be expressed via the constitutive

equations as 
Mx

My

Mxy

 = D


1 ν 0

ν 1 0

0 0
1− ν

2




κx

κy

κxy

 = Db


κx

κy

κxy

 , (2.4)
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where

D =
E h3

12 (1− ν2)
, (2.5)

and Sx

Sy

 = Gk h

1 0

0 1


γxz

γyz

 = Ds

γxz

γyz

 . (2.6)

In the equations above, E is Young's modulus, h is the plate thickness, ν is Poisson's ratio, G is

the shear modulus and k is the shear correction factor.

Equilibrium equations of the di�erential plate element can be written in terms of moments

and shear stress resultants as
∂Mx

∂x
+

∂Mxy

∂y
= Sx ,

∂Mxy

∂x
+

∂My

∂y
= Sy

and

∂Sx

∂x
+

∂Sy

∂y
= −q(x, y) ,

(2.7)

where q is the distributed loading which is assumed to act perpendicular to the middle plane of

the plate. These equations can be rewritten in terms of displacements and rotations as

D

2

[
(1− ν)∇2 θy + (1 + ν)

∂

∂x

(
∂θy
∂x

− ∂θx
∂y

)]
−Gk h

(
∂w

∂x
+ θy

)
= 0 ,

−D

2

[
(1− ν)∇2 θx − (1 + ν)

∂

∂y

(
∂θy
∂x

− ∂θx
∂y

)]
−Gk h

(
∂w

∂y
− θx

)
= 0

and

Gk h

[
∇2w +

(
∂θy
∂x

− ∂θx
∂y

)]
+ q = 0 ,

(2.8)

where ∇2 is the two-dimensional Laplace operator.
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2.2 Classical theory of plane elasticity

Classical theory of plane elasticity describes mechanics of �at bodies whose one dimension is

either very small or very large in comparison to the other two dimensions. Consequently, there

are two general types of problems describing each, plane stress and plane strain, respectively. A

deformed body con�guration can be described for the Cartesian coordinate system in terms of

two orthogonal displacement �elds: u(x, y) in the x direction and v(x, y) in the y direction, as

shown in Fig. 2.2. Additionally, strains are assumed to be small.

Figure 2.2: Di�erential 2D element after displacement and deformation

Normal strains (εx, εy) and shear strain (γxy) can be expressed via the kinematic equations

as 
εx

εy

γxy

 =



∂u

∂x

∂v

∂y

∂v

∂x
+

∂u

∂y


. (2.9)

A plane stress state is considered here only due to the scope of this thesis. In such state,

stresses directed perpendicular to the x-y plane (σz, τxz, τyz) are assumed to be zero, i.e.,

σz = τxz = τyz = 0 , (2.10)
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where z is the direction perpendicular to the x-y plane. Normal stresses (σx, σy) and shear

stress (τxy) can be expressed via the constitutive equations for a homogeneous, isotropic and

linear elastic material as
σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2




εx

εy

γxy

 = Dm


εx

εy

γxy

 . (2.11)

Additionally, it follows that the strains directed perpendicular to the x-y plane (εz, γxz, γyz) are


εz

γxz

γyz

 =


− ν

E
(σx + σy)

0

0

 . (2.12)

Equilibrium equations of the di�erential 2D element can be written in terms of stresses as

∂σx
∂x

+
∂τxy
∂y

+X = 0

and

∂τxy
∂x

+
∂σy
∂y

+ Y = 0 ,

(2.13)

where X and Y are the body forces per unit volume in the x and y direction, respectively. These

equations can be rewritten in terms of displacements as

1

2

E

1− ν2

[
(1− ν)∇2 u+ (1 + ν)

∂

∂x

(
∂u

∂x
+

∂v

∂y

)]
+X = 0

and

1

2

E

1− ν2

[
(1− ν)∇2 v + (1 + ν)

∂

∂y

(
∂u

∂x
+

∂v

∂y

)]
+ Y = 0 .

(2.14)
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2.3 The �nite element procedure

Instead of �nding the strong form solutions of the partial di�erential equations, which are for

practical boundary value problems usually non-existent, a weak (integral) form is obtained by

following the principle of virtual work. A weak solution is found via the variational principle of

minimum total potential energy.

The total potential energy, written as a functional Π, can be expressed as

Π = U +W (2.15)

where U is the strain energy of the system and W is the potential energy of the external loads.

Equilibrium is ensured if the total potential energy is stationary, i.e.,

δΠ = δ(U +W ) = 0 . (2.16)

If u is set as an unknown displacement function that represents the solution of the problem,

the total potential energy of the problem is stationary for arbitrary variations of the displacements

δu. With the approximation of the displacement function, the total potential energy of the

problem can be rewritten as

Π =
1

2
ũTKũ− ũTf , (2.17)

where ũ are the approximated unknown displacements, K is the sti�ness matrix and f is the load

vector. Finite element equations can be obtained now for a �nite number (n) of ũ parameters

by making the Π stationary for all δũ as

∂Π

∂ũ
=



∂Π

∂ũ1
∂Π

∂ũ2
...

∂Π

∂ũn


= Kũ− f = 0 . (2.18)

A stable equilibrium in which the total potential energy is at its minimum is achieved if K is

a positive-de�nite matrix, which is the case for linear elastic problems. Additionally, K is also

symmetric (K = KT).

With the discretisation of the problem domain on �nite elements, the displacement function
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approximation is assumed for each �nite element rather than for the entire domain. Consequently,

each �nite element has its own sti�ness matrix Ke, which can be written in a general form as

Ke =

∫
Ωe

BTDB dΩ , (2.19)

where B is the strain-displacement matrix and D is the elasticity matrix. Element sti�ness

matrices are then assembled into a larger matrix which represents the global sti�ness matrix of

the entire problem (K) by summing the coe�cients that relate to the same displacements.

By rewriting Eq. (2.18) as

Kũ = f , (2.20)

a �nite element solution can be obtained in terms of the unknown displacements ũ as

ũ = K−1f (2.21)

after inserting the displacement boundary conditions. However, in practice the sti�ness matrix

K is not inverted, but rather Eq. (2.20) is solved by a direct or iterative method.
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Chapter 3

Mindlin plate �nite elements

3.1 Two-node Timoshenko beam �nite element with problem-

dependent cubic linked interpolation

Mindlin plate �nite elements presented in this chapter are based on the two-node Timoshenko

beam �nite element with the problem-dependent cubic linked interpolation. Basis for such an

approach is the close kinematic relation between Mindlin plate theory and Timoshenko beam

theory, since Mindlin plate theory may be regarded as a generalisation of Timoshenko beam

theory to two-dimensional problems.

Interpolations for transverse displacements (w) and rotations (θ) for the two-node Timo-

shenko beam �nite element with the problem-dependent cubic linked interpolation are derived

by satisfying the di�erential equations of the Timoshenko beam, and can be written using the

natural coordinate ξ ∈ [−1, 1] as

w =
w1 + w2

2
− ξ

w1 − w2

2

− (1− ξ2)
L

4

θ1 − θ2
2

− ξ (1− ξ2)
L

4

(
w1 − w2

L
− θ1 + θ2

2

)
1

1 +
12E I

L2GkA

(3.1)

and

θ =
θ1 + θ2

2
− ξ

θ1 − θ2
2

+ (1− ξ2)
3

2

(
w1 − w2

L
− θ1 + θ2

2

)
1

1 +
12E I

L2GkA

.
(3.2)
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In these equations, L is the element length, I the second moment of area and A the area of cross

section. Complete derivation of these equations can be found in Ref. [38].

Following the kinematic equation γ = (dw/dx)+θ, where the dx is the di�erential segment of

the beam, shear strain (γ) is obtained as constant throughout the element, and can be expressed

as

γ = −
(
w1 − w2

L
− θ1 + θ2

2

)
1

1 +
12E I

L2GkA

. (3.3)

The term cubic linked interpolation refers to the cubic polynomial interpolation order of

the transverse displacements, while the interpolation order of the rotations is one order lower

(quadratic). In addition, interpolations are linked, i.e., the higher-order polynomial terms in the

interpolation for the transverse displacements include the nodal rotations and vice versa. As for

the term problem-dependent, it refers to the dependence of the interpolations on the geometric

and the material properties of the beam [39].

This beam �nite element is free of shear locking and is capable of returning the exact results

for certain load cases [12]. Additionally, it has been successfully utilised for Mindlin plate �nite

elements in the literature [21�23,40�42].

3.2 Displacement-based approach

Following the displacement-based approach is the classical procedure used in the �nite element

development. In such procedure, a displacement function is interpolated throughout the �nite

element domain as a starting point. Strain-displacement matrices B that are used to form the

�nite element sti�ness matrix Ke [Eq. (2.19)] after integration are derived from the displacement

function by following the kinematic equations [Eq. (2.2)].

Mindlin plate �nite elements have three independent displacement1 �elds: transverse dis-

placement �eld (w) and two orthogonal rotational �elds (θx, θy). Consequently, Mindlin plate

�nite elements have three degrees of freedom (or three unknown parameters) per node. A three-

node Mindlin plate �nite element with its nodal degrees of freedom is shown in Fig. 3.1.

An arbitrary point inside the three-node �nite element domain can be de�ned with area

coordinates ξ1, ξ2 and ξ3, as shown in Fig. 3.2, where ai and bi are the element side projections,

Li the element side lengths, Ai areas de�ned by the point inside the element and the element

sides (i = 1, 2, 3), while A is the total area of the element.

1The term displacement here is meant in its wider sense.
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Figure 3.1: Degrees of freedom of a three-node Mindlin plate �nite element

Figure 3.2: A three-node �nite element geometry and area coordinates
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Interpolations for the transverse displacement �eld and the rotational �elds are derived here

for the new three-node Mindlin plate �nite element by generalising the Timoshenko beam �nite

element described in the previous section (Sec. 3.1), and can be written as

w = ξ1w1 + ξ2w2 + ξ3w3

+ ξ1 ξ2 cqw3 + ξ2 ξ3 cqw1 + ξ3 ξ1 cqw2

+ (ξ1 − ξ2) ξ1 ξ2 ccw3 + (ξ2 − ξ3) ξ2 ξ3 ccw1 + (ξ3 − ξ1) ξ3 ξ1 ccw2 + ξ1 ξ2 ξ3 cbw ,

(3.4)

θx = ξ1 θx1 + ξ2 θx2 + ξ3 θx3

+ ξ1 ξ2 cqθx3
+ ξ2 ξ3 cqθx1

+ ξ3 ξ1 cqθx2

(3.5)

and

θy = ξ1 θy1 + ξ2 θy2 + ξ3 θy3

+ ξ1 ξ2 cqθy3
+ ξ2 ξ3 cqθy1

+ ξ3 ξ1 cqθy2
,

(3.6)

where

cqwi = −
θxj − θxk

2
bi −

θyj − θyk
2

ai (3.7)

are the quadratic polynomial coe�cients in the transverse displacement �eld and

ccwi = cimi (3.8)

are the cubic polynomial coe�cients in the transverse displacement �eld, with

ci = wj − wk −
θxj + θxk

2
bi −

θyj + θyk
2

ai (3.9)

and the problem-dependent parameters

mi =
1

1 +
2h2

Li
2 k (1− ν)

. (3.10)

The quadratic polynomial coe�cients in the rotational �elds are also dependent on ccwi and can

be expressed as

cqθxi
= 6 ccwi

bi

Li
2 (3.11)
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and

cqθyi
= 6 ccwi

ai

Li
2 . (3.12)

In these equations, indices i, j and k are cyclic permutations of the node numbers and also the

element side numbers taken anticlockwise, as shown in Fig. 3.2.

An internal (bubble) degree of freedom (cbw) is added in the transverse displacement �eld

[Eq. (3.4)] for the polynomial completeness of the cubic interpolation (ten cubic terms in the

Pascal triangle). Its function is maximum at the element centroid, while zero on the element

edges. It is thus statically condensed in the �nal assembly of the element sti�ness matrix.

Since these interpolations are derived by generalising the two-node beam element interpo-

lations, conformity is ful�lled as common sides of adjacent plate elements have the same nodal

and geometric parameters involved in the interpolations.

Ribari¢ presented two four-node Mindlin plate �nite elements named Q4-U3 and Q4-U3R5 in

Ref. [38] by following the same approach. Before that, Ribari¢ and Jeleni¢ presented a three-node

Mindlin plate �nite element with quadratic linked interpolation named T3-U2 in Ref. [19], which

can be regarded as a lower-order polynomial version of the element presented in this section.

Accordingly, the new element is named T3-U3.

It shall be noted that by following the kinematic equations [Eq. (2.2)], the resulting shear

strain �elds (γxz, γyz) are obtained as quadratic polynomials, whereas for the Timoshenko beam

�nite element, the shear strain is constant [Eq. (3.3)].

3.3 Assumed strain method

In contrast to the classical displacement-based approach, strains in the assumed strain method

are not derived from displacement interpolations by following the kinematic equations. Gener-

ally, there are partial or complete kinematic inconsistencies between strains and displacement

interpolations. Moreover, displacement interpolations are in some �nite element formulations

completely disregarded. It is the concept of the assumed strain method to abandon displace-

ment interpolations in favour of strain interpolations, as it has been proven to be e�ective in

development of new high performing �nite elements.

By following a displacement-based approach, shear strains for Mindlin plate �nite elements

are generally obtained from kinematic equations as higher-order polynomials, contrary to that

obtained from equilibrium equations. The shear locking phenomenon is postulated to be the
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result of such inconsistency. With the shear strain interpolations that are assumed as lower-

order polynomials, mostly as zero-order (constant) or �rst-order (linear) polynomials, the shear

locking is reduced, or even eliminated. Displacement-based Mindlin plate �nite elements with

reduced integration of shear strain terms have been proven to be superior in performance and

less susceptible to the shear locking than those fully integrated.

Given the advantages of the assumed strain method, shear strain interpolations are now as-

sumed directly by generalising the alongside shear strain expression [Eq. (3.3)] of the Timoshenko

beam �nite element described in Sec. 3.1. Shear strains for each plate element side (γi) can be

derived by generalising this shear strain expression as

γi = −ci
1−mi

Li
. (3.13)

These shear strains can be represented as rotation vectors with perpendicular direction and with

constant magnitude throughout their respective element sides, as shown in Fig. 3.3. Since ci

involve only the nodal and geometric parameters of the corresponding element side, the shear

strains γi are conforming between two adjacent elements sharing the same side.

Figure 3.3: Rotation vector representation of the shear strains

With the alongside shear strains γi joining at the element nodes (Fig. 3.3), it follows that

the global nodal shear strains can be uniquely expressed as

γxzi =
γk Lk bj − γj Lj bk

2A
(3.14)
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and

γyzi =
γk Lk aj − γj Lj ak

2A
. (3.15)

Consequently, the shear strain �elds can be assumed linear throughout the element as

γxz = ξ1 γxz1 + ξ2 γxz2 + ξ3 γxz3 (3.16)

and

γyz = ξ1 γyz1 + ξ2 γyz2 + ξ3 γyz3 . (3.17)

Such approach for obtaining the shear strain �elds has already been taken by Soh et al. [21].

Additionally, the authors derived the rotational �elds in the same way previously shown for the

T3-U3 element.

One interesting point is that if the problem-dependent parameters mi are disregarded from

Eq. (3.13), the resulting shear strain �elds would be exactly the same as those obtained from the

T3-U2 element.

A transverse displacement �eld of a cubic polynomial order can be derived next in a way

that the kinematic equations [Eq. (2.2)] are satis�ed, which is not typical for the assumed strain

concept. For that, it is su�cient to check the kinematic equations at the element nodes. Since

the kinematic equations are checked at the element nodes, the rotational �elds only involve their

nodal parameters (rotations). The resulting transverse displacement �eld can be written as

w = ξ1w1 + ξ2w2 + ξ3w3

+ ξ1 ξ2 cqw3 + ξ2 ξ3 cqw1 + ξ3 ξ1 cqw2

+ (ξ1 − ξ2) ξ1 ξ2 ccw3 + (ξ2 − ξ3) ξ2 ξ3 ccw1 + (ξ3 − ξ1) ξ3 ξ1 ccw2

(3.18)

and it is exactly the same as that for the T3-U3 element [Eq. (3.4)], apart from the bubble term

cbw which, like its �rst derivatives, has no e�ect at the element nodes.

By taking a step further in such approach, rotational �elds of a quadratic polynomial order

can be derived in the same way by checking the kinematic equations [Eq. (2.2)] in the element

side midpoints. With that, the resulting rotational �elds follow as

θx = ξ1 θx1 + ξ2 θx2 + ξ3 θx3

+ ξ1 ξ2 cqθx3
+ ξ2 ξ3 cqθx1

+ ξ3 ξ1 cqθx2

(3.19)
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and

θy = ξ1 θy1 + ξ2 θy2 + ξ3 θy3

+ ξ1 ξ2 cqθy3
+ ξ2 ξ3 cqθy1

+ ξ3 ξ1 cqθy2
,

(3.20)

where

cqθxi
=

3 ccwi (aj − ak)− (ccwj − ccwk
) ai

2A
(3.21)

and

cqθyi
= −

3 ccwi (bj − bk)− (ccwj − ccwk
) bi

2A
. (3.22)

This completes a �nite element formulation that has a full kinematic consistency, and accord-

ingly, the new �nite element is named T3-LSC (Triangular element with 3 nodes, Linear Shear

strain �elds and a kinematically Consistent formulation).

The approach presented here in which a full kinematic consistency is established is not com-

mon to the assumed strain method. As a result of that, shear part of the sti�ness matrix for the

T3-LSC element can be formed either directly by using the shear strain expressions (3.16) and

(3.17) or by using a classical procedure where shear strain �elds are obtained from kinematic

equations [Eq. (2.2)]. The latter allows for an addition of the internal degree of freedom cbw in

the transverse displacement �eld [Eq. (3.18)], which would ful�l the polynomial completeness of

the cubic interpolation. It is interesting to note that during the numerical investigation, it was

found that the addition of cbw has no e�ect on the results. Also, complete kinematic consistency

would hold with the addition of cbw if the quadratic coe�cients in the rotational �elds become

cqθxi
=

3 ccwi (aj − ak)− (ccwj − ccwk
) ai + cbw ai

2A
(3.23)

and

cqθyi
= −

3 ccwi (bj − bk)− (ccwj − ccwk
) bi + cbw bi

2A
. (3.24)

However, convergence issues arise in such case with the static condensation of cbw in the �nal

assembly of the element sti�ness matrix.
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In contrast to the approach taken to derive the rotational �elds for the T3-LSC element, the

following quadratic polynomial coe�cients in the rotational �elds are considered additionally:

cqθxi
= p

ccwi (aj − ak)− (ccwj − ccwk
) ai

2A
(3.25)

and

cqθyi
= −p

ccwi (bj − bk)− (ccwj − ccwk
) bi

2A
, (3.26)

where p is an arbitrary value. These coe�cients have a special property which makes them vanish

if a reduced numerical integration (1 point Gauss quadrature) is carried out for the bending part

of the sti�ness matrix, e�ectively reducing the interpolations of the rotational �elds to a linear

level. Such a particular feature possibly account for the passing of the patch test regardless

of the element size, and consequently, for the good convergence properties, as shown later in

Section 3.5. Clearly, full numerical integration (3 point Gauss quadrature) for the bending part

of the sti�ness matrix is adopted for a new �nite element formulation, in addition to the optimal

value for p (p = 4), which is chosen as such based on the e�ectiveness observed in all benchmark

problems. Lower values of p result in softer response, whereas higher values result in sti�er

response. Additionally, in�uence of p diminishes with �nite element mesh re�nement. Since

these quadratic polynomial coe�cients in the rotational �elds are kinematically independent to

the rest of the �nite element formulation, the new �nite element is named T3-LSI (Triangular

element with 3 nodes, Linear Shear strain �elds and Independent rotational �elds).

The quadratic polynomial coe�cients cqθxi
and cqθyi

, which are related to each �nite element

side, involve all nodal and geometric parameters of the corresponding element. This results in

nonconforming rotational �elds for both T3-LSC and T3-LSI elements.

3.4 Sti�ness matrix and uniform load vector

Shear strains [Eq. (2.2)] and curvatures [Eq. (2.3)] can be re-written in the following form:

γ = Bs up (3.27)

and

κ = Bb up , (3.28)
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where Bs and Bb are strain-displacement matrices and

up =

{
w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3

}T

(3.29)

is a vector of unknown nodal degrees of freedom.

The �nite element sti�ness matrix is then formed with two independent contributions, the

shear energy part, and the bending energy part, by integrating over the element domain as

Kp
e = Ks

e +Kb
e =

∫
Ae

Bs
TDsBs dA+

∫
Ae

Bb
TDbBb dA . (3.30)

Shear part of the sti�ness matrix for the presented assumed strain �nite elements is formed

quickly since their shear strain �elds are de�ned directly. Consequently, this adds to the compu-

tational e�ciency of these elements.

If a plate is subjected to a uniformly distributed load, integration of the transverse displace-

ment interpolation has to be carried out in order to determine the element load vector (f e). In

such case, the element load vector can be obtained as

f e =

∫
Ae

q w dA , (3.31)

where q is the constant load intensity. In that regard, the uniform load vector for the T3-U3

element is obtained by integrating the transverse displacement �eld expression from (3.4), in

contrast to the one from (3.18) for the T3-LSC and T3-LSI elements. Given the linked form of

the elements' transverse displacement �elds, the resulting load vectors consist not only of nodal

forces, but also of nodal moments. Additionally, contribution of the cubic part in the transverse

displacement �eld to the element load vector calculated for the uniformly distributed load are,

apart from the term related to a bubble shape (cbw), equal to zero due to their antisymmetric

shapes.

3.5 Numerical examples

In this section, the presented elements T3-U3, T3-LSC and T3-LSI are analysed on a variety of

standard benchmark examples, and the results are compared to other relevant elements from the

literature: T3-2LIM by Auricchio and Taylor [20], ARS-T9 by Soh et al. [21], RDKTM by Chen

and Cheung [22] and HDF-P3-7β by Huang et al. [23]. The presented elements, in addition to
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the ARS-T9 element, have been incorporated into the Finite Element Analysis Program (FEAP)

[43] in which all numerical examples have been performed. That allowed for a comprehensive

comparison with the T3-2LIM element which is the default three-node plate �nite element in

FEAP. The results of the RDKTM and HDF-P3-7β elements are taken from the original papers

[22, 23]. The HDF-P3-7β element results are in the original paper given normalised to the

reference solutions, and they are recalculated here for comparative purposes.

All elements used in the comparison have some similarities and equalities in the approach

and the formulation, e.g., the linked interpolation concept is common to all elements. The ARS-

T9 and RDKTM elements have the same interpolations for the rotational �elds, whereas the

ARS-T9, T3-LSC and T3-LSI elements have the same interpolations for the shear strain �elds.

The results from the numerical examples indicate that the performance of ARS-T9 and RDKTM

elements is almost identical. Additionally, these two elements perform basically the same as the

DKT element (Discrete Kirchho� Triangle [16]) for very thin plate cases.

3.5.1 Patch test

First numerical example is a patch test for a constant bending state. Functions for the transverse

displacements and the rotations are taken from Ref. [44] as:

w = (1 + x+ 2 y + x2 + x y + y2)/2 ,

θx = (2 + x+ 2 y)/2

and

θy = −(1 + 2x+ y)/2 .

(3.32)

The patch test model is de�ned with the arbitrary mesh shown in Fig. 3.4 where the transverse

displacements and the rotations are given in the external nodes (1, 2, 7 and 8) and checked in

the internal nodes (3, 4, 5 and 6). The plate properties are E = 105, ν = 0.25, k = 5/6,

with h being taken as 0.01 for thin and 1.0 for thick plate case. The expected moments are

Mx = My = −11111.1̇h3 and Mxy = −3333.3̇h3 and they are constant over the entire patch

domain, in addition to the shear stress resultants which are equal to zero.

The presented elements T3-U3 and T3-LSI pass the patch test as the exact transverse dis-

placements and rotations are obtained in the internal nodes, as shown in Table 3.1. Additionally,

exact moments and zero shear stress resultants are obtained in the integration points. The T3-
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Figure 3.4: Patch test mesh

LSC element does not pass the patch test on the �nite element mesh de�ned in Fig. 3.4. However,

as the mesh gets denser, convergence to the exact results is achieved, and when the size of the

elements become in�nitesimal, the patch test is passed. If the exact transverse displacements and

the rotations are given in all nodes, the T3-LSC element would yield the exact stress resultants

regardless of the element size.

The presented elements have a correct rank as only three eigenvalues corresponding to the

rigid body modes, are equal to zero, i.e., the presented elements have no spurious zero-energy

modes. Table 3.2 shows eigenvalues only for the element enclosed by nodes 3, 4 and 6.

Table 3.1: Constant bending patch test results

T3-LSC T3-U3 / T3-LSI / Exact
Node h w θx θy w θx θy

3
0.01 5.4133E-01 1.0361E+00 -5.4889E-01

5.4140E-01 1.0400E+00 -5.5000E-01
1.0 5.4049E-01 1.0402E+00 -5.4958E-01

4
0.01 6.3913E-01 1.1144E+00 -6.9372E-01

6.3935E-01 1.1200E+00 -6.9500E-01
1.0 6.3942E-01 1.1199E+00 -6.9451E-01

5
0.01 6.2917E-01 1.1191E+00 -6.1664E-01

6.2960E-01 1.1200E+00 -6.2000E-01
1.0 6.2818E-01 1.1199E+00 -6.1954E-01

6
0.01 6.8204E-01 1.1613E+00 -7.0424E-01

6.8240E-01 1.1600E+00 -7.0000E-01
1.0 6.8143E-01 1.1598E+00 -6.9978E-01

Strain energy Strain energy
0.01 3.4933E-04 3.6800E-04
1.0 3.6768E+02 3.6800E+02
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Table 3.2: Eigenvalues of the plate element enclosed by nodes 3, 4 and 6

Element h
1 2 3 4 5 6
7 8 9

T3-U3
0.01

3.0725E+02 2.7743E+00 7.1032E-02 2.0395E-02 3.1793E-03 1.9423E-03
2.4237E-14 -9.1873E-15 -1.1065E-16

1.0
8.4174E+04 2.2612E+04 9.9242E+03 9.3431E+03 2.4533E+03 1.0015E+01
-5.8926E-12 -3.1127E-12 2.6762E-12

T3-LSC
0.01

4.6604E+01 1.7071E+01 1.2358E-02 9.6023E-03 2.4758E-03 2.3728E-03
-8.8324E-15 -1.3018E-15 2.1963E-17

1.0
8.3835E+04 2.3139E+04 9.8859E+03 9.3813E+03 2.4557E+03 9.9760E+00
-8.4570E-12 2.6067E-12 -1.8174E-12

T3-LSI
0.01

7.6439E+01 4.7577E+00 2.4922E-02 2.2603E-02 2.5753E-03 2.4565E-03
3.4831E-15 -3.0647E-15 1.5401E-17

1.0
8.3945E+04 2.2604E+04 1.0014E+04 9.4072E+03 2.4561E+03 1.0025E+01
-3.5293E-12 2.8738E-12 -2.0269E-12

3.5.2 Square plate

Uniformly loaded square plate with the loading intensity q = 1 and the plate properties being

E = 10.92, ν = 0.3 and k = 5/6 is analysed next. Di�erent span to thickness ratios are considered

in order to check very thin to thick plate cases. In addition, two di�erent mesh types A and B

are analysed. Due to the orthogonal symmetry of the problem, only quarter of the square plate

model is analysed, as shown in Fig. 3.5. The results are given numerically in Tables 3.3-3.8, and

graphically in Figs. 3.6-3.9.

Figure 3.5: Square plate models
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The T3-U3 element exhibits shear locking behaviour in this numerical example on coarse

meshes. Interestingly, the shear locking is not pronounced so much on Mesh A when the boundary

conditions are simply supported. With the �nite element mesh re�nement, the shear locking

behaviour fades rapidly. On the other hand, the T3-LSC element does not yield accurate moments

on very dense meshes when the plate is very thin, even though it is convergent in terms of the

displacement values. Other than that, the presented elements perform well, with the T3-LSI

element among the best performing.

Table 3.3: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded simply
supported square plate (Mesh A)

L/h = 1000
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.39910 0.36756 0.32571 0.46002 0.40253
4 x 4 0.40452 0.39726 0.32995 0.42434 0.40521
8 x 8 0.40585 0.40406 0.36455 0.41253 0.40595
16 x 16 0.40614 0.40570 0.39979 0.40860 0.40616
32 x 32 0.40621 0.40610 0.40576 0.40720 0.40622
64 x 64 0.40623 0.40620 0.40620 0.40664 0.40623
Ref. [4] 0.40624

L/h = 100
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.39930 0.36773 0.34054 0.46015 0.40272
4 x 4 0.40473 0.39743 0.39069 0.42445 0.40543
8 x 8 0.40606 0.40424 0.40503 0.41255 0.40618
16 x 16 0.40635 0.40588 0.40634 0.40849 0.40639
32 x 32 0.40642 0.40630 0.40643 0.40702 0.40644
64 x 64 0.40644 0.40641 0.40644 0.40657 0.40644
Ref. [4] 0.40644

L/h = 10
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.41836 0.38452 0.41743 0.47466 0.42098
4 x 4 0.42502 0.41649 0.42494 0.44157 0.42576
8 x 8 0.42667 0.42446 0.42650 0.43123 0.42686
16 x 16 0.42712 0.42656 0.42706 0.42836 0.42716
32 x 32 0.42724 0.42710 0.42722 0.42758 0.42725
64 x 64 0.42727 0.42724 0.42727 0.42736 0.42728
Ref. [4] 0.42728

L/h = 5
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.47286 0.43704 0.47102 0.52500 0.47490
4 x 4 0.48534 0.47641 0.48460 0.50107 0.48598
8 x 8 0.48896 0.48672 0.48871 0.49343 0.48914
16 x 16 0.49002 0.48946 0.48995 0.49126 0.49006
32 x 32 0.49032 0.49018 0.49030 0.49066 0.49033
64 x 64 0.49040 0.49037 0.49039 0.49050 0.49040
Ref. [21] 0.4906
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Table 3.4: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded simply
supported square plate (Mesh B)

L/h = 1000
Mesh T3-2LIM ARS-T9 HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.38412 0.40559 0.40120 0.00405 0.42772 0.39536
4 x 4 0.40114 0.40649 0.40518 0.06342 0.41225 0.40320
8 x 8 0.40503 0.40637 0.40600 0.29303 0.40868 0.40545
16 x 16 0.40594 0.40628 0.40620 0.39577 0.40743 0.40604
32 x 32 0.40616 0.40625 0.40554 0.40685 0.40619
64 x 64 0.40622 0.40624 0.40619 0.40654 0.40623
Ref. [4] 0.40624

L/h = 100
Mesh T3-2LIM ARS-T9 RDKTM T3-U3 T3-LSC T3-LSI
2 x 2 0.38436 0.40577 0.4058 0.19722 0.42787 0.39559
4 x 4 0.40137 0.40665 0.4069 0.37981 0.41234 0.40343
8 x 8 0.40524 0.40653 0.4065 0.40454 0.40866 0.40569
16 x 16 0.40615 0.40645 0.40629 0.40728 0.40627
32 x 32 0.40637 0.40643 0.40641 0.40665 0.40641
64 x 64 0.40643 0.40644 0.40643 0.40646 0.40644
Ref. [4] 0.40644

L/h = 10
Mesh T3-2LIM ARS-T9 HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.40786 0.42551 0.42361 0.42010 0.44500 0.41846
4 x 4 0.42293 0.42641 0.42604 0.42538 0.42948 0.42525
8 x 8 0.42627 0.42699 0.42690 0.42667 0.42718 0.42681
16 x 16 0.42704 0.42721 0.42719 0.42712 0.42711 0.42717
32 x 32 0.42723 0.42727 0.42725 0.42721 0.42726
64 x 64 0.42727 0.42728 0.42728 0.42726 0.42728
Ref. [4] 0.42728

L/h = 5
Mesh T3-2LIM ARS-T9 RDKTM T3-U3 T3-LSC T3-LSI
2 x 2 0.47582 0.49018 0.4902 0.48613 0.50654 0.48580
4 x 4 0.48752 0.49045 0.4904 0.48918 0.49261 0.48978
8 x 8 0.48989 0.49057 0.4906 0.49021 0.49058 0.49042
16 x 16 0.49034 0.49050 0.49042 0.49038 0.49047
32 x 32 0.49042 0.49046 0.49044 0.49040 0.49045
64 x 64 0.49043 0.49044 0.49043 0.49042 0.49044
Ref. [21] 0.4906
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Figure 3.6: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded simply
supported square plate (Mesh A and B)
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Table 3.5: Normalised central moment M/(10−2 q L2) of the uniformly loaded simply supported
square plate obtained in Gauss point that is closest to the centre of the plate (Mesh A and B)

L/h = 1000
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 4.486 4.354 4.385 4.495 3.075 0.058 5.536 4.679 4.657 4.425
4 x 4 4.721 4.692 4.706 4.734 2.781 0.821 5.380 4.809 4.732 4.723
8 x 8 4.775 4.763 4.771 4.774 3.549 4.036 5.323 4.867 4.767 4.779
16 x 16 4.786 4.782 4.785 4.784 4.531 4.879 5.306 4.890 4.782 4.788
32 x 32 4.788 4.787 4.788 4.787 4.764 4.799 5.297 4.899 4.786 4.789
64 x 64 4.789 4.788 4.788 4.788 4.787 4.789 5.271 4.900 4.788 4.789
Ref. [4] 4.78863

L/h = 100
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 4.487 4.354 4.384 4.496 3.422 2.698 5.532 4.679 4.659 4.424
4 x 4 4.722 4.692 4.705 4.735 4.417 4.689 5.367 4.808 4.735 4.722
8 x 8 4.776 4.763 4.769 4.775 4.763 4.770 5.272 4.863 4.770 4.777
16 x 16 4.787 4.781 4.784 4.786 4.794 4.783 5.144 4.878 4.785 4.786
32 x 32 4.789 4.786 4.787 4.789 4.792 4.788 4.950 4.872 4.789 4.787
64 x 64 4.789 4.788 4.788 4.789 4.790 4.789 4.823 4.847 4.789 4.788
Ref. [4] 4.78863

L/h = 10
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 4.528 4.338 4.341 4.598 4.929 4.826 5.287 4.683 4.751 4.403
4 x 4 4.748 4.675 4.676 4.799 4.903 4.847 4.975 4.801 4.814 4.705
8 x 8 4.786 4.753 4.757 4.802 4.831 4.807 4.829 4.816 4.807 4.769
16 x 16 4.789 4.778 4.780 4.794 4.802 4.793 4.796 4.801 4.795 4.784
32 x 32 4.789 4.786 4.786 4.790 4.793 4.790 4.790 4.792 4.791 4.788
64 x 64 4.789 4.788 4.788 4.789 4.790 4.789 4.789 4.790 4.789 4.788
Ref. [4] 4.78863

L/h = 5
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 4.554 4.314 4.289 4.747 5.068 5.108 5.052 4.716 4.855 4.429
4 x 4 4.757 4.661 4.664 4.834 4.925 4.889 4.877 4.788 4.845 4.719
8 x 8 4.788 4.750 4.756 4.807 4.835 4.814 4.812 4.791 4.811 4.774
16 x 16 4.790 4.777 4.780 4.794 4.803 4.795 4.795 4.789 4.796 4.785
32 x 32 4.789 4.786 4.786 4.790 4.793 4.790 4.790 4.788 4.791 4.788
64 x 64 4.789 4.788 4.788 4.789 4.790 4.789 4.789 4.789 4.789 4.788
Ref. -
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Figure 3.7: Normalised central moment M/(10−2 q L2) of the uniformly loaded simply supported
square plate obtained in Gauss point that is closest to the centre of the plate (Mesh A and B)
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Table 3.6: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded clamped
square plate (Mesh A)

L/h = 1000
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.10537 0.12145 0.00067 0.13656 0.11289
4 x 4 0.12073 0.12578 0.01113 0.13267 0.12309
8 x 8 0.12504 0.12636 0.07556 0.12883 0.12566
16 x 16 0.12616 0.12649 0.12060 0.12740 0.12632
32 x 32 0.12644 0.12652 0.12607 0.12688 0.12648
64 x 64 0.12651 0.12653 0.12649 0.12668 0.12652
Ref. [4] 0.12653

L/h = 100
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.10556 0.12162 0.04102 0.13671 0.11306
4 x 4 0.12098 0.12599 0.10897 0.13286 0.12332
8 x 8 0.12530 0.12658 0.12455 0.12900 0.12590
16 x 16 0.12641 0.12672 0.12643 0.12754 0.12656
32 x 32 0.12669 0.12676 0.12670 0.12700 0.12673
64 x 64 0.12676 0.12678 0.12676 0.12683 0.12677
Ref. [4] 0.12653

L/h = 10
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.12451 0.13924 0.12313 0.15256 0.13012
4 x 4 0.14355 0.14730 0.14350 0.15335 0.14495
8 x 8 0.14862 0.14951 0.14848 0.15143 0.14895
16 x 16 0.14998 0.15020 0.14993 0.15075 0.15006
32 x 32 0.15034 0.15039 0.15032 0.15055 0.15036
64 x 64 0.15043 0.15044 0.15043 0.15049 0.15044
Ref. [4] 0.1499

L/h = 5
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.17933 0.19312 0.17656 0.20422 0.18282
4 x 4 0.20665 0.21007 0.20585 0.21528 0.20754
8 x 8 0.21435 0.21520 0.21410 0.21688 0.21458
16 x 16 0.21645 0.21666 0.21638 0.21715 0.21650
32 x 32 0.21702 0.21706 0.21700 0.21721 0.21702
64 x 64 0.21716 0.21718 0.21716 0.21722 0.21717
Ref. [21] 0.2167
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Table 3.7: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded clamped
square plate (Mesh B)

L/h = 1000
Mesh T3-2LIM ARS-T9 HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.12241 0.15474 0.12249 0.00067 0.14807 0.12920
4 x 4 0.12511 0.13474 0.12545 0.01219 0.13215 0.12632
8 x 8 0.12619 0.12866 0.12637 0.07947 0.12817 0.12640
16 x 16 0.12645 0.12707 0.12653 0.12171 0.12712 0.12650
32 x 32 0.12652 0.12667 0.12620 0.12678 0.12653
64 x 64 0.12653 0.12657 0.12651 0.12664 0.12653
Ref. [4] 0.12653

L/h = 100
Mesh T3-2LIM ARS-T9 RDKTM T3-U3 T3-LSC T3-LSI
2 x 2 0.12268 0.15496 0.1550 0.04215 0.14830 0.12947
4 x 4 0.12540 0.13497 0.1350 0.11210 0.13238 0.12661
8 x 8 0.12646 0.12888 0.1289 0.12550 0.12837 0.12670
16 x 16 0.12671 0.12730 0.12668 0.12727 0.12678
32 x 32 0.12677 0.12691 0.12676 0.12690 0.12679
64 x 64 0.12678 0.12681 0.12677 0.12680 0.12679
Ref. [4] 0.12653

L/h = 10
Mesh T3-2LIM ARS-T9 HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.14815 0.17658 0.14945 0.14676 0.17119 0.15530
4 x 4 0.15010 0.15753 0.15018 0.14938 0.15550 0.15191
8 x 8 0.15037 0.15213 0.15015 0.14988 0.15149 0.15081
16 x 16 0.15044 0.15087 0.15036 0.15028 0.15066 0.15054
32 x 32 0.15046 0.15056 0.15042 0.15050 0.15048
64 x 64 0.15046 0.15049 0.15045 0.15047 0.15047
Ref. [4] 0.1499

L/h = 5
Mesh T3-2LIM ARS-T9 RDKTM T3-U3 T3-LSC T3-LSI
2 x 2 0.21831 0.24226 0.2423 0.21519 0.23993 0.22669
4 x 4 0.21820 0.22428 0.2243 0.21634 0.22313 0.22014
8 x 8 0.21761 0.21910 0.2191 0.21696 0.21860 0.21804
16 x 16 0.21735 0.21772 0.21718 0.21754 0.21746
32 x 32 0.21726 0.21735 0.21722 0.21730 0.21729
64 x 64 0.21723 0.21726 0.21722 0.21723 0.21724
Ref. [21] 0.2167
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Figure 3.8: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded clamped
square plate (Mesh A and B)
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Table 3.8: Normalised central moment M/(10−2 q L2) of the uniformly loaded clamped square
plate obtained in Gauss point that is closest to the centre of the plate (Mesh A and B)

L/h = 1000
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 1.737 1.906 2.021 2.381 0.013 0.015 2.328 2.282 2.018 2.076
4 x 4 2.152 2.209 2.234 2.356 0.182 0.244 2.537 2.303 2.208 2.250
8 x 8 2.255 2.273 2.274 2.311 1.192 1.626 2.535 2.327 2.263 2.286
16 x 16 2.282 2.286 2.286 2.296 2.091 2.339 2.534 2.337 2.282 2.291
32 x 32 2.288 2.289 2.289 2.292 2.270 2.299 2.532 2.342 2.288 2.291
64 x 64 2.290 2.290 2.290 2.291 2.289 2.291 2.521 2.343 2.290 2.291
Ref. [4] 2.2905

L/h = 100
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 1.737 1.906 2.020 2.382 0.818 0.952 2.325 2.283 2.019 2.076
4 x 4 2.153 2.210 2.233 2.358 1.947 2.259 2.531 2.303 2.209 2.250
8 x 8 2.256 2.273 2.273 2.313 2.252 2.294 2.511 2.326 2.265 2.285
16 x 16 2.282 2.286 2.285 2.298 2.290 2.291 2.457 2.333 2.284 2.291
32 x 32 2.289 2.290 2.289 2.294 2.292 2.292 2.367 2.331 2.290 2.291
64 x 64 2.290 2.291 2.290 2.292 2.291 2.291 2.307 2.319 2.291 2.291
Ref. [4] 2.2905

L/h = 10
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 1.725 1.933 1.964 2.448 2.110 2.563 2.178 2.351 2.035 2.137
4 x 4 2.180 2.234 2.213 2.453 2.330 2.428 2.340 2.345 2.262 2.308
8 x 8 2.286 2.297 2.287 2.368 2.333 2.357 2.322 2.339 2.310 2.324
16 x 16 2.312 2.314 2.310 2.335 2.325 2.331 2.318 2.328 2.318 2.322
32 x 32 2.318 2.318 2.317 2.324 2.322 2.323 2.319 2.322 2.320 2.321
64 x 64 2.319 2.320 2.319 2.321 2.320 2.321 2.320 2.321 2.320 2.320
Ref. [4] 2.31

L/h = 5
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh A B A B A B A B A B
2 x 2 1.709 1.922 1.914 2.564 2.206 2.740 2.035 2.487 2.054 2.246
4 x 4 2.193 2.264 2.213 2.518 2.360 2.521 2.287 2.416 2.286 2.379
8 x 8 2.317 2.333 2.315 2.411 2.365 2.409 2.339 2.372 2.341 2.370
16 x 16 2.347 2.351 2.345 2.373 2.360 2.371 2.352 2.361 2.353 2.362
32 x 32 2.355 2.356 2.354 2.362 2.358 2.361 2.356 2.358 2.356 2.359
64 x 64 2.357 2.357 2.356 2.359 2.358 2.358 2.357 2.358 2.357 2.358
Ref. -
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Figure 3.9: Normalised central moment M/(10−2 q L2) of the uniformly loaded clamped square
plate obtained in Gauss point that is closest to the centre of the plate (Mesh A and B)
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3.5.3 Circular plate

Uniformly loaded circular plate is analysed with the same loading intensity (q = 1) and the same

plate properties (E = 10.92, ν = 0.3 and k = 5/6). Di�erent span to thickness ratios are also

considered in order to check thin to thick plate cases. Similarly, due to the axisymmetric nature

of the problem, only quarter of the circular plate model is analysed, as shown in Fig. 3.10.

Figure 3.10: Circular plate models

The results from this benchmark problem, given numerically in Tables 3.9-3.12 and graphi-

cally in Figs. 3.11-3.14, indicate that the T3-U3 and T3-LSI elements perform better when the

boundary conditions are simply supported, whereas the T3-LSC element performs better when

the boundary conditions are clamped. The T3-LSI element exhibits very good ability to capture

moments in all cases.

Table 3.9: Central displacement w of the uniformly loaded simply supported circular plate

R/h = 50
Num. of elem. T3-2LIM ARS-T9 RDKTM HDF-P3-7β T3-U3 T3-LSC T3-LSI

6 40847 37849 37849 40955 37120 46783 41492
24 40066 39397 39394 40127 39148 42295 40316
96 39888 39729 39730 39908 39786 40652 39961

Ref. [5] 39832
R/h = 5

Num. of elem. T3-2LIM ARS-T9 RDKTM HDF-P3-7β T3-U3 T3-LSC T3-LSI
6 42.541 39.463 39.463 42.568 42.256 47.837 42.953
24 41.827 41.091 41.089 41.840 41.798 43.400 41.997
96 41.658 41.472 41.473 41.657 41.641 41.983 41.707

Ref. [5] 41.599
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Table 3.10: Central moment M of the uniformly loaded simply supported circular plate obtained
in Gauss point that is closest to the centre of the plate

R/h = 50
Num. of elem. T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

6 4.777 4.667 4.479 5.312 5.423
24 5.051 5.096 5.032 5.337 5.180
96 5.133 5.147 5.165 5.278 5.162

Ref. [5] 5.156
R/h = 5

Num. of elem. T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
6 4.773 4.803 5.433 5.400 5.341
24 5.048 5.120 5.289 5.246 5.204
96 5.130 5.162 5.208 5.208 5.173

Ref. [5] 5.156

Table 3.11: Central displacement w of the uniformly loaded clamped circular plate

R/h = 50
Num. of elem. T3-2LIM ARS-T9 RDKTM T3-U3 T3-LSC T3-LSI

6 7712.9 10307 10307 4137.9 8572.4 8290.7
24 9234.7 9994.8 9982.4 8128.2 9630.8 9482.6
96 9644.2 9847.8 9851.7 9534.0 9778.2 9717.2

Ref. [5] 9783.5
R/h = 5

Num. of elem. T3-2LIM ARS-T9 RDKTM T3-U3 T3-LSC T3-LSI
6 9.4647 11.921 11.921 9.2888 9.9984 9.7403
24 11.006 11.702 11.687 10.990 11.258 11.169
96 11.415 11.594 11.598 11.399 11.472 11.464

Ref. [5] 11.551

Table 3.12: Central moment M of the uniformly loaded clamped circular plate obtained in Gauss
point that is closest to the centre of the plate

R/h = 50
Num. of elem. T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

6 1.317 1.814 1.054 1.872 2.099
24 1.841 2.038 1.861 1.916 1.975
96 1.987 2.039 2.021 2.032 2.017

Ref. [5] 2.031
R/h = 5

Num. of elem. T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
6 1.342 1.950 2.016 1.967 2.000
24 1.842 2.064 2.087 1.912 2.003
96 1.985 2.054 2.064 2.018 2.028

Ref. [5] 2.031
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Figure 3.11: Central displacement w of the uniformly loaded simply supported circular plate

Figure 3.12: Central momentM of the uniformly loaded simply supported circular plate obtained
in Gauss point that is closest to the centre of the plate
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Figure 3.13: Central displacement w of the uniformly loaded clamped circular plate

Figure 3.14: Central moment M of the uniformly loaded clamped circular plate obtained in
Gauss point that is closest to the centre of the plate
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3.5.4 Razzaque's skew plate

Razzaque's skew plate [45] is another frequently analysed benchmark problem, shaped as a

parallelogram with an angle of 60◦ and two opposite edges as simply supported, as shown in

Fig. 3.15. Like the previous problems, it is uniformly loaded (q = 1) and has the same plate

properties (E = 10.92, ν = 0.3 and k = 5/6). However, the whole plate is now discretised.

Figure 3.15: Razzaque's skew plate model

The presented elements T3-LSC and T3-LSI perform quite well in this numerical example,

as it can be observed in Tables 3.13-3.14 or in Figs. 3.16-3.17. It is interesting to note that the

T3-U3 element does not show its susceptibility to the shear locking phenomenon on this very

thin plate example.

Table 3.13: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded Raz-
zaque's skew plate

L/h = 1000
Mesh T3-2LIM ARS-T9 RDKTM HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.78308 0.63823 0.71902 0.58594 0.84652 0.80436
4 x 4 0.79452 0.75095 0.7527 0.77353 0.69535 0.80311 0.79439
8 x 8 0.79434 0.78006 0.7822 0.78648 0.75635 0.79361 0.79351
16 x 16 0.79316 0.78805 0.78981 0.78587 0.79172 0.79281
32 x 32 0.79222 0.79020 0.78999 0.79127 0.79211
64 x 64 0.79166 0.79079 0.79077 0.79113 0.79164
Ref. [45] 0.7945
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Figure 3.16: Normalised central displacement w/(10−2 q L4/D) of the uniformly loaded Raz-
zaque's skew plate

Figure 3.17: Normalised moment My/(10
−1 q L2) of the uniformly loaded Razzaque's skew plate

obtained in Gauss point that is closest to the centre of the plate
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Table 3.14: Normalised moment My/(10
−1 q L2) of the uniformly loaded Razzaque's skew plate

obtained in Gauss point that is closest to the centre of the plate

L/h = 1000
Mesh T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI
2 x 2 0.7129 0.4636 0.6249 0.5468 0.3771
4 x 4 0.9116 0.8842 0.8508 0.9263 0.8839
8 x 8 0.9595 0.9375 0.9064 0.9459 0.9399
16 x 16 0.9583 0.9544 0.9545 0.9565 0.9560
32 x 32 0.9592 0.9590 0.9589 0.9600 0.9602
64 x 64 0.9600 0.9596 0.9598 0.9598 0.9601
Ref. [45] 0.9589

3.5.5 Morley's skew plate

Another skew plate example known as the Morley's skew plate [46], is analysed as well. It has

a rather small acute angle of only 30◦ and it is simply supported on all edges, as shown in Fig.

3.18. Like the Razzaque's skew plate, it is modelled as a whole plate and like in all previous

examples, it is uniformly loaded (q = 1) and has the same plate properties (E = 10.92, ν = 0.3

and k = 5/6).

Figure 3.18: Morley's skew plate model

Due to the nature of the problem, theoretically in�nite principal moments occur in the obtuse

corners of the plate, one having a positive and the other having a negative sign. Such unique

property is quite demanding for the �nite element veri�cation. Tables 3.15-3.16 or Figs. 3.19-

3.20 show that all elements, except the T3-U3 element, have fairly similar performance. They

all have a softer response on coarse meshes, including the T3-U3 element even for the very thin

plate case. This behaviour is likely due to the high skewness and the inability of the correct

model description with such coarse meshes. Nevertheless, the T3-LSI element exhibits very good

ability to capture moments overall.
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Table 3.15: Normalised central displacement w/(10−3 q L4/D) of the uniformly loaded Morley's
skew plate

L/h = 1000
Mesh T3-2LIM ARS-T9 RDKTM HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.63508 0.62584 0.59050 0.43048 0.86650 0.73202
4 x 4 0.45724 0.45272 0.453 0.45300 0.38897 0.46813 0.47486
8 x 8 0.42922 0.42421 0.424 0.42220 0.37806 0.42991 0.43439
16 x 16 0.42188 0.41929 0.419 0.41718 0.39228 0.41981 0.42380
32 x 32 0.41816 0.41658 0.417 0.40262 0.41604 0.41911
64 x 64 0.41572 0.41459 0.40788 0.41394 0.41629
Ref. [4] 0.408

L/h = 100
Mesh T3-2LIM ARS-T9 RDKTM HDF-P3-7β T3-U3 T3-LSC T3-LSI
2 x 2 0.63591 0.62671 0.44345 0.86732 0.73292
4 x 4 0.45819 0.45366 0.454 0.42591 0.46898 0.47582
8 x 8 0.43037 0.42525 0.425 0.41537 0.43084 0.43550
16 x 16 0.42382 0.42071 0.421 0.41634 0.42117 0.42551
32 x 32 0.42183 0.41921 0.419 0.41756 0.41863 0.42232
64 x 64 0.42218 0.42022 0.41945 0.41945 0.42215
Ref. [4] 0.423

Figure 3.19: Normalised central displacement w/(10−3 q L4/D) of the uniformly loaded Morley's
skew plate
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Figure 3.20: Normalised principal moments M1,2/(10
−2 q L2) of the uniformly loaded Morley's

skew plate obtained in Gauss point that is closest to the centre of the plate
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Table 3.16: Normalised principal moments M1,2/(10
−2 q L2) of the uniformly loaded Morley's

skew plate obtained in Gauss point that is closest to the centre of the plate

L/h = 1000
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

2 x 2 1.716 0.856 1.603 1.022 1.301 0.655 2.209 1.324 1.909 0.871
4 x 4 1.670 0.927 1.717 1.270 1.709 0.962 1.625 0.980 1.785 1.161
8 x 8 1.867 1.082 1.825 1.071 1.836 1.091 1.890 1.076 1.902 1.118
16 x 16 1.924 1.114 1.915 1.113 1.889 1.121 1.918 1.104 1.935 1.130
32 x 32 1.931 1.117 1.926 1.114 1.895 1.081 1.924 1.109 1.935 1.123
64 x 64 1.928 1.113 1.924 1.110 1.906 1.086 1.923 1.107 1.930 1.116
Ref. [4] 1.91 / 1.08

L/h = 100
T3-2LIM ARS-T9 T3-U3 T3-LSC T3-LSI

Mesh M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

2 x 2 1.716 0.856 1.602 1.022 1.309 0.708 2.209 1.324 1.909 0.871
4 x 4 1.672 0.927 1.718 1.270 1.858 1.177 1.626 0.981 1.786 1.161
8 x 8 1.866 1.082 1.825 1.072 1.910 1.122 1.889 1.076 1.902 1.118
16 x 16 1.928 1.117 1.917 1.115 1.924 1.113 1.919 1.106 1.938 1.132
32 x 32 1.941 1.127 1.931 1.121 1.931 1.118 1.930 1.116 1.943 1.131
64 x 64 1.946 1.132 1.939 1.127 1.938 1.125 1.937 1.124 1.946 1.133
Ref. [4] 1.91 / 1.08

3.6 Conclusions

Three new three-node Mindlin plate �nite elements T3-U3, T3-LSC and T3-LSI are presented,

all based on the two-node Timoshenko beam �nite element with problem-dependent cubic linked

interpolation. The T3-U3 element is developed using a classical �nite element displacement-

based procedure by interpolating transverse displacement �eld and rotational �elds, which are

obtained by generalising the Timoshenko beam element interpolations. The T3-LSC and T3-LSI

elements are developed by generalising the constant shear strain expression of the Timoshenko

beam element along each of the element side, which results in linear shear strain �elds in global

coordinate directions. For the T3-LSC element, the rotational �elds are derived in a way that the

whole �nite element formulation is kinematically consistent in every point inside the �nite element

domain, whereas for the T3-LSI element, the rotational �elds are interpolated independently, i.e.,

the rotational �elds are kinematically independent to the rest of the �nite element formulation,

and they are assumed in a way that should increase the element's convergence properties, in

addition to its performance.

The T3-U3 and T3-LSI elements pass the patch test for the constant bending state regardless

of the element size, so that the convergence towards a solution can be reliably expected in all

cases. That is also the case with the T3-LSC element, which passes the constant bending patch

test only when the size of the elements become in�nitesimal, even though the element formulation
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itself is capable of providing the exact stress resultants regardless of the element size. However,

the very thin square plate problems have shown that the T3-LSC element does not yield accurate

moments on very dense meshes, even though it is convergent in terms of the displacement values.

Notwithstanding, the results from the other plate problems show its good convergence properties

for both displacement and moment values.

The T3-U3 element has shown its susceptibility to the shear locking phenomenon, especially

on very thin square plate problems with coarse meshes, but interestingly, not really on other

plate problems. Its shear locking behaviour rapidly fades away with the �nite element mesh

re�nement. The performance of the T3-U3 element improves as the plate gets thicker. For thick

plate cases, the T3-U3 element is very e�ective and among the best performing. In contrast

to the T3-LSC and T3-LSI elements, it is not as computationally e�cient due to the static

condensation procedure of the internal degree of freedom and its higher-order shear strain terms

which require higher-order numerical integration.

On the other hand, the T3-LSC and T3-LSI elements are completely free of shear locking,

which makes them suitable for the analysis of very thin to thick plate cases. More to the point,

the T3-LSC element is exhibiting softer response in most (very) thin plate problems. Performance

of these two elements is not changing much with di�erent thickness to span ratios, i.e., whether

the plate is (very) thin or thick. Additionally, they are computationally e�cient due to their

direct shear strain �elds de�nitions.

Among the presented elements, the T3-LSI appears to be the best for practical application as

it has not shown any weaknesses in the benchmark problems and because it is: capable of passing

the constant bending patch test regardless of the element size, shear locking free, computationally

e�cient, high performing and e�ective in all cases.

The T3-U3 and T3-LSC elements are also usable for practical application, but with some

caution. The T3-U3 element should be avoided on (very) thin plate problems with coarse meshes

due to its susceptibility to the shear locking phenomenon. The T3-LSC element does not always

yield accurate moments when the plate is (very) thin. This is possibly connected to its inability

to pass the constant bending patch test regardless of the element size. Other than that, these

elements perform well and can also be reliably used in all moderately thick to thick plate cases

nonetheless.

As it can be deduced from the numerical results, the performance of the presented �nite

elements is comparable to the other existing �nite elements used in the comparison, which is
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somewhat expected as there are similarities in the approach and the formulation. The T3-LSI

element has all the necessary requirements to be considered as a strong candidate for a default

plate �nite element inside a �nite element analysis software. With respect to the T3-2LIM

element from FEAP, the T3-LSI element has a simpler formulation and is computationally more

e�cient. Performance wise, these elements are quite similar overall and one does not have an

apparent advantage over the other.

The presented �nite elements are considered later in Chapter 5 to make the out-of-plane

Mindlin plate bending part in a �at shell �nite element formulation.
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Chapter 4

Membrane �nite elements with

rotational degrees of freedom

4.1 Rotational degrees of freedom

A three-node membrane �nite element with its nodal degrees of freedom, including the rotational

ones commonly referred to as drilling rotations, is shown in Fig. 4.1. According to the classical

theory of plane elasticity, rotations are not independent of displacements. By considering a

di�erential element after translation and rotation in its plane, as shown in Fig. 4.2, rotation of

the element can be obtained as

θz =
∂v

∂x
= −∂u

∂y
. (4.1)

Consequently, rotation of a single point inside a deformable 2D body follows by averaging as

θz(x, y) =
1

2

(
∂v

∂x
− ∂u

∂y

)
. (4.2)

Thus, introduction of rotations as additional degrees of freedom in a �nite element formulation

con�icts the theory. However, it does not con�ict the �nite element concept, moreover, it has

proven to be advantageous in the �nite element application. Furthermore, the rotational degrees

of freedom do not even need to be or represent real rotations. In such case, the �nite element

application is limited to plane elasticity problems and moment loads are not allowed. However,

higher element performance is generally attained, e.g., the elements presented in Refs. [26,32,33],

possibly due to the lack of constraints that are linked to those rotational degrees of freedom [e.g.

Eq. (4.2)].
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Figure 4.1: Degrees of freedom of a three-node membrane plate �nite element with drilling
rotations

Figure 4.2: Di�erential 2D element after translation and rotation
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As mentioned previously in Chapter 1, membrane �nite elements with true rotations possess

some signi�cant advantages over the ones that do not. Essentially, the only practical advantage

of not having true rotations as rotational degrees of freedom in a �nite element formulation is

a potential increase in e�ciency. With that, new membrane �nite elements are developed here

with the rotational degrees of freedom being true rotations.

4.2 Displacement interpolations with true rotations

The displacement �elds (u and v) for the new elements are quadratic polynomials and can be

written as

u = ξ1 u1 + ξ2 u2 + ξ3 u3

+ ξ1 ξ2 cqu3
+ ξ2 ξ3 cqu1

+ ξ3 ξ1 cqu2

(4.3)

and

v = ξ1 v1 + ξ2 v2 + ξ3 v3

+ ξ1 ξ2 cqv3 + ξ2 ξ3 cqv1 + ξ3 ξ1 cqv2 ,

(4.4)

where cqui
and cqvi are the quadratic polynomial coe�cients which include nodal rotations (linked

interpolation), and are determined later in the Sections 4.3 and 4.4. The true rotational �eld

(θz) can be derived now by following Eq. (4.2) as

θz = θze +
1

4A
[(ξ2 b1 + ξ1 b2) cqv3 + (ξ3 b2 + ξ2 b3) cqv1 + (ξ1 b3 + ξ3 b1) cqv2

− (ξ2 a1 + ξ1 a2) cqu3
− (ξ3 a2 + ξ2 a3) cqu1

− (ξ1 a3 + ξ3 a1) cqu2
]

(4.5)

in which

θze =
1

4A
(v1 b1 + v2 b2 + v3 b3 − u1 a1 − u2 a2 − u3 a3) (4.6)

is the element rotation. Since the rotational �eld follows as a linear polynomial, it can also be

written in terms of its nodal parameters (rotations) as

θz = ξ1 θz1 + ξ2 θz2 + ξ3 θz3 . (4.7)

With Eqs. (4.5) and (4.7) being equivalent, the relation between cqui
and cqvi , and nodal displace-

ments and rotations can be established, e.g., at the element nodes, which yields the following
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three equations:

θz1 = θze +
1

4A
(cqv3 b2 + cqv2 b3 − cqu3

a2 − cqu2
a3) , (4.8)

θz2 = θze +
1

4A
(cqv1 b3 + cqv3 b1 − cqu1

a3 − cqu3
a1) (4.9)

and

θz3 = θze +
1

4A
(cqv2 b1 + cqv1 b2 − cqu2

a1 − cqu1
a2) . (4.10)

This provides three out of six equations used in the next section from which cqui
and cqvi are

obtained, and ultimately secures that the displacement interpolations satisfy Eq. (4.2) in every

point inside the element domain, which in turn ensures that the �nite element analysis always

yields true rotations1. The other three equations are determined by adopting certain strain

assumptions, as described in the following section.

4.3 Assumed strain method

With the displacement �elds assumed as quadratic polynomials [Eqs. (4.3) and (4.4)], strains

can be derived by following Eq. (2.9) as

εx =
1

2A
[u1 b1 + u2 b2 + u3 b3

+ (ξ2 b1 + ξ1 b2) cqu3
+ (ξ3 b2 + ξ2 b3) cqu1

+ (ξ1 b3 + ξ3 b1) cqu2
] ,

(4.11)

εy =
1

2A
[v1 a1 + v2 a2 + v3 a3

+ (ξ2 a1 + ξ1 a2) cqv3 + (ξ3 a2 + ξ2 a3) cqv1 + (ξ1 a3 + ξ3 a1) cqv2 ]

(4.12)

and

γxy =
1

2A
[v1 b1 + v2 b2 + v3 b3 + u1 a1 + u2 a2 + u3 a3

+ (ξ2 b1 + ξ1 b2) cqv3 + (ξ3 b2 + ξ2 b3) cqv1 + (ξ1 b3 + ξ3 b1) cqv2

+ (ξ2 a1 + ξ1 a2) cqu3
+ (ξ3 a2 + ξ2 a3) cqu1

+ (ξ1 a3 + ξ3 a1) cqu2
] .

(4.13)

1Eq. (4.2) does not need to be satis�ed in the entire element domain for the �nite element analysis to yield
true rotations. E.g., the �nite element analysis also yields true rotations for the element presented by Allman in
Ref. [28], in which Eq. (4.2) is satis�ed only at the element nodes.
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Strains in the element centroid (ξ1 = ξ2 = ξ3 = 1/3) follow as

εxC =
1

2A

(
u1 b1 + u2 b2 + u3 b3 −

1

3
cxC

)
, (4.14)

εyC =
1

2A

(
v1 a1 + v2 a2 + v3 a3 −

1

3
cyC

)
(4.15)

and

γxyC =
1

2A

(
v1 b1 + v2 b2 + v3 b3 + u1 a1 + u2 a2 + u3 a3 −

1

3
cxyC

)
, (4.16)

where

cxC = cqu1
b1 + cqu2

b2 + cqu3
b3 , (4.17)

cyC = cqv1a1 + cqv2a2 + cqv3a3 (4.18)

and

cxyC = cqv1b1 + cqv2b2 + cqv3b3 + cqu1
a1 + cqu2

a2 + cqu3
a3 . (4.19)

The element presented by Allman in Ref. [26] has the following quadratic coe�cients in the

displacement �elds:

cqui
=

θzj − θzk
2

bi (4.20)

and

cqvi =
θzj − θzk

2
ai , (4.21)

which is the standard linked interpolation form, and yields cxC , cyC and cxyC as

cxC = cqu1
b1 + cqu2

b2 + cqu3
b3

= p

(
θz2 − θz3

2
b1

2 +
θz3 − θz1

2
b2

2 +
θz1 − θz2

2
b3

2

)
,

(4.22)

cyC = cqv1a1 + cqv2a2 + cqv3a3

= p

(
θz2 − θz3

2
a1

2 +
θz3 − θz1

2
a2

2 +
θz1 − θz2

2
a3

2

) (4.23)

and

cxyC = cqv1b1 + cqv2b2 + cqv3b3 + cqu1
a1 + cqu2

a2 + cqu3
a3

= p [(θz2 − θz3) a1 b1 + (θz3 − θz1) a2 b2 + (θz1 − θz2) a3 b3] ,

(4.24)
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in which p = 1. Given the element good performance, these equations are assumed for the new

element as the other three equations from which cqui
and cqvi are obtained. Thus, by solving

Eqs. (4.8)-(4.10) and (4.22)-(4.24) for cqui
and cqvi , the quadratic coe�cients for the new element

are obtained as

cqui
= (θzj − θzk) bi − (θzi − θze) (bj − bk)−

1

2
p [θzk bj − θzj bk − θzi(bj − bk)] (4.25)

and

cqvi = (θzj − θzk) ai − (θzi − θze) (aj − ak)−
1

2
p [θzk aj − θzj ak − θzi(aj − ak)] . (4.26)

Additionally, the value of p is adjusted for e�ciency to the optimal value of 1.3̇ (p = 4/3). Lower

or higher values of p result in a sti�er response, and the in�uence of p diminishes with the �nite

element mesh re�nement.

Even though a displacement form is obtained for the new �nite element presented here, it

is named ACST (Assumed Centroidal Strain Triangle) since it is based on strain assumptions

given in the element centroid.

4.4 Pure bending element

A three-node membrane �nite element capable of achieving the exact response for an arbitrary

pure bending problem is sought in this section. The motivation lies in the fact that such element

would be of a major importance in the �nite element analyses, and that it has not been found

to date.

For an arbitrary pure bending state, the displacement �elds are quadratic polynomials, and

the rotational �eld follows as a linear polynomial, as assumed previously [Eqs. (4.3), (4.4) and

(4.7)]. Appropriate quadratic coe�cients in the displacement �elds have been found as

cqui
= −κx bi ai + κy

bi
2 + ν ai

2

2
(4.27)

and

cqvi = κy ai bi − κx
ai

2 + ν bi
2

2
, (4.28)
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where

κx =
∂θz
∂x

=
1

2A
(θz1 b1 + θz2 b2 + θz3 b3) (4.29)

and

κy =
∂θz
∂y

=
1

2A
(θz1 a1 + θz2 a2 + θz3 a3) (4.30)

are the element in-plane curvatures2. With that, an element capable of achieving the exact

response for pure bending problems in which the principal axes coincide with the x and y axes

only is obtained. On the other hand, its displacement interpolations do not satisfy Eq. (4.2),

hence, values of true rotations are not to be expected in the �nite element solution. By modifying

cqui
and cqvi as

cqui
= −κx bi ai + κy

bi
2 + ν ai

2

2
+ o (bj − bk) (4.31)

and

cqvi = κy ai bi − κx
ai

2 + ν bi
2

2
+ o (aj − ak) , (4.32)

where

o = θze −
θz1 + θz2 + θz3

3

− 1

24A
[κx (b1 a2 a3 + b2 a3 a1 + b3 a1 a2 − 3 ν b1 b2 b3)

+ κy (a1 b2 b3 + a2 b3 b1 + a3 b1 b2 − 3 ν a1 a2 a3)] ,

(4.33)

Eq. (4.2) is now satis�ed in every point inside the element domain3, i.e., the �nite element

analysis will always yield true nodal rotations. Moreover, the introduction of o also ensures that

the element is free of spurious zero-energy mode in all cases. Additionally, the element's pure

bending capability is retained, and the element is thus named PBCT (Pure Bending Capable

Triangle).

The displacement �elds for both ACST and PBCT elements are nonconforming since the

quadratic coe�cients cqui
and cqvi , which are related to each �nite element side, involve all nodal

and geometric parameters of the corresponding element.

2Not in relation with the out-of-plane curvatures from Eq. (2.3).
3As are Eqs. (4.8)-(4.10).
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4.5 Sti�ness matrix

Strains [Eq. (2.9)] can be re-written as

ε = Bm um , (4.34)

in which Bm is a strain-displacement matrix and

um =

{
u1 v1 θz1 u2 v2 θz2 u3 v3 θz3

}T

(4.35)

is a vector of unknown nodal degrees of freedom.

The �nite element sti�ness matrix is formed by considering the strain energy contribution

and integrating over the element domain as

Km
e =

∫
Ae

Bm
TDmBm t dA , (4.36)

where t is the element thickness.

4.6 Numerical examples

In this section, the presented elements ACST and PBCT are analysed on a variety of standard

benchmark problems, and the results are compared to the elements presented by Allman in

Refs. [26, 28] and to the CST element [24]. These elements have been incorporated into FEAP,

in which all numerical examples were performed.

4.6.1 Patch test

First numerical example is a patch test for a constant strain state. Functions for the displacement

�elds are given as

u = 0.008x+ 0.004 y

and

v = 0.003x+ 0.006 y.

(4.37)

The rotational �eld follows as

θz =
1

2

(
∂v

∂x
− ∂u

∂y

)
= −0.0005 . (4.38)

60



The patch test model is de�ned with the arbitrary mesh shown in Fig. 4.3, which is identical

to Fig. 3.4, but is reproduced here for clarity. The displacements and the rotations are given

in the external nodes (1, 2, 7 and 8) and checked in the internal nodes (3, 4, 5 and 6). The

plate properties are E = 1500.0, ν = 0.25 and t = 1.0. The expected strains are εx = 0.006,

εy = 0.008 and γxy = 0.007, and they are constant over the entire patch domain.

Figure 4.3: Patch test mesh

The presented element ACST passes the patch test as the exact displacements and rotations

are obtained in the internal nodes, as shown in Table 4.1, in addition to the exact strains which

are obtained in the integration points. The PBCT element does not pass the patch test on the

�nite element mesh de�ned in Fig. 4.3. However, as the mesh gets denser, convergence to the

exact results is achieved, and when the size of the elements become in�nitesimal, the patch test

is passed. If the exact transverse displacements and the rotations are given in all nodes, the

PBCT element would yield the exact strains regardless of the element size.

The presented elements have a correct rank as only three eigenvalues corresponding to the

rigid body modes, are equal to zero, i.e., the presented elements have no spurious zero-energy

modes. Table 4.2 shows eigenvalues only for the element enclosed by nodes 3, 4 and 6.

Table 4.1: Constant strain patch test results

PBCT ACST / Exact
Node u v θz u v θz
3 3.7884E-04 2.5700E-04 -1.0294E-03 4.0000E-04 2.4000E-04 -5.0000E-04
4 1.5941E-03 7.2706E-04 8.7722E-04 1.5600E-03 7.2000E-04 -5.0000E-04
5 9.3982E-04 6.7799E-04 1.3506E-03 9.6000E-04 7.2000E-04 -5.0000E-04
6 1.5967E-03 9.7845E-04 -3.0637E-04 1.6000E-03 9.6000E-04 -5.0000E-04

Strain energy Strain energy
3.20376E-03 3.28032E-03
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Table 4.2: Eigenvalues of the membrane element enclosed by nodes 3, 4 and 6

Element
1 2 3 4 5 6
7 8 9

ACST
6.5869E+03 4.0721E+03 5.2744E+02 4.4248E+02 1.8641E+00 8.7888E-02
8.9613E-13 -4.2283E-13 -1.3098E-14

PBCT
6.5876E+03 4.0737E+03 5.2742E+02 4.4245E+02 3.0000E+00 8.0625E-02
8.8380E-13 2.5063E-13 7.6827E-15

4.6.2 Pure bending of a simply supported beam

A simply supported beam subjected to a unit pure bending load is analysed next. Properties

of the membrane element describing the beam in its loading plane are E = 100.0, ν = 0.0 and

t = 1.0. Two di�erent �nite element meshes are considered, one being regular (at least two

element sides are mutually orthogonal, and parallel to the beam edges), and the other quite

distorted, as shown in Fig. 4.4. The exact solution in point A is uA = −0.3, vA = 1.5 and

θzA = 0.0.

Figure 4.4: A simply supported beam model under pure bending

Table 4.3 shows that the PBCT element is capable of reproducing the exact response for this

problem4, regardless of the �nite element mesh. Moreover, this is also the case for any value of

Poisson's ratio ranging from -1.0 to 0.5. However, if the beam edges do not coincide with the

coordinate axes x and y, the PBCT element would not yield the exact results.

Regarding the beam problem itself, the results from the CST element show how demanding

it is to represent a pure bending state on such coarse meshes (Fig. 4.4). With that in mind,

decent performance of the ACST element can be observed, which is better than the one from

Ref. [28] and almost as good as the one from Ref. [26].

4Not only in the point A, but in every point inside the beam domain.
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Table 4.3: Results for the simply supported beam subjected to the pure bending load in the
point A

Regular mesh
CST Allman [26] Allman [28] ACST PBCT Exact

uA -0.02497 -0.13627 -0.05130 -0.09091 -0.30000 -0.3
vA 0.12245 0.67677 0.25670 0.44919 1.50000 1.5
θzA 0.00000 0.00000 0.00000 0.0

Distorted mesh
CST Allman [26] Allman [28] ACST PBCT Exact

uA -0.01765 -0.10216 -0.03819 -0.09540 -0.30000 -0.3
vA 0.05587 0.55261 0.17470 0.36774 1.50000 1.5
θzA 0.00288 0.00177 0.00000 0.0

4.6.3 Pure bending of a cantilever beam

An additional pure bending problem is analysed here for the purpose of the PBCT element

veri�cation. This time a cantilever beam under a unit pure bending load is considered in multiple

con�gurations depending on the angle α, as shown in Fig. 4.5. The element properties are

E = 150.0, ν = 0.0 and t = 1.0. The exact transverse displacement in point A is 1.0.

Figure 4.5: A cantilever beam model under pure bending rotated by α

Fig. 4.6 shows that the PBCT element, unlike the other elements, yields di�erent results with

respect to α. If the beam edges coincide with the coordinate axes x and y, the PBCT element

yields exact results, and as the beam rotates from that position, the error in the result increases

up to its maximum value at α = π/4. The maximum error value is similar to the error values of

other elements. Unfortunately, the behaviour of the PBCT element in this numerical example

indicates that the element formulation is not invariant, i.e., it depends on how the model is

de�ned with respect to the coordinate axes.
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Figure 4.6: Error in the transverse displacement in point A

4.6.4 Timoshenko cantilever beam

Timoshenko cantilever beam is the next beam problem analysed here, with the element properties

being E = 30000.0, ν = 0.25 and t = 1.0. The beam is loaded at its end by a parabolically

distributed shear force P = 40. Like in the previous numerical example, both regular and

distorted meshes are considered, as shown in Fig. 4.7.

This beam problem was �rst described in Ref. [10], for which an analytical solution exist and

can be given in terms of displacements as

u =
P

24E I
[12 (x− 2L)x− (2 + ν)(4 y2 − h2)] y

and

v =
P

24E I
[−4 (x− 3L)x2 + (4 + 5 ν)h2 x− 12 (x− L) ν y2] ,

(4.39)

where

I =
t h3

12
. (4.40)

The rotational �eld follows as

θz =
1

2

(
∂v

∂x
− ∂u

∂y

)
=

P

24E I
[−12 (x− 2L)x+ 12 y2 + (1 + 2 ν)h2] . (4.41)

Boundary conditions are for the clamped beam end de�ned as prescribed displacements, which

are obtained from these equations (rotations are not prescribed, but kept free). Analogously,

exact solution in the point A can be obtained as uA = 0.0, vA = 0.3553̇ and θzA = 0.01075.
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Figure 4.7: Timoshenko cantilever beam model

The results shown numerically in Tables 4.4 and 4.5, and graphically in Fig. 4.8 point out

the exceptional performance of the PBCT element. The ACST element performs well, almost

identically to the element presented in Ref. [26], and better than the one presented in Ref.

[28]. Additionally, mesh distortions are not considerably a�ecting the elements in terms of

performance, but the PBCT element is proving to be the most resistant to it.

Table 4.4: Vertical displacement vA of the Timoshenko cantilever beam

Regular meshes
Mesh CST Allman [26] Allman [28] ACST PBCT
4 x 1 0.09265 0.27282 0.16801 0.26963 0.35133
8 x 2 0.19932 0.34007 0.27781 0.33395 0.36349
16 x 4 0.29550 0.35466 0.33219 0.34927 0.35741
32 x 8 0.33804 0.35608 0.34929 0.35373 0.35579
64 x 16 0.35083 0.35577 0.35382 0.35492 0.35543

Exact 0.3553̇
Distorted meshes

Mesh CST Allman [26] Allman [28] ACST PBCT
4 x 1 0.08149 0.24312 0.14777 0.24527 0.34847
8 x 2 0.18972 0.31884 0.25721 0.30924 0.35803

Exact 0.3553̇
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Table 4.5: Rotation θzA of the Timoshenko cantilever beam

Regular meshes
Mesh Allman [28] ACST PBCT
4 x 1 0.005057 0.008188 0.010806
8 x 2 0.008381 0.010061 0.010971
16 x 4 0.010044 0.010552 0.010811
32 x 8 0.010567 0.010697 0.010763
64 x 16 0.010704 0.010736 0.010753
Exact 0.01075

Distorted meshes
Mesh Allman [28] ACST PBCT
4 x 1 0.004541 0.007460 0.010802
8 x 2 0.007852 0.009297 0.010980
Exact 0.01075

Figure 4.8: Vertical displacement vA and rotation θzA of the Timoshenko cantilever beam on
regular meshes

4.6.5 Curved beam

The last beam problem analysed here is a curved cantilever beam loaded at its end by a uniformly

distributed shear unit load, as shown in Fig. 4.9. The element properties are E = 1.0E+07,

ν = 0.25 and t = 0.1. This benchmark problem introduced in Ref. [47] is quite demanding for

the �nite element veri�cation due to the slenderness and the curvature of the beam.

The element presented by Allman in Ref. [26] performs the best on this numerical example,

followed by the here presented elements ACST and PBCT, as it can be observed in Tables 4.6

and 4.7 or in Fig. 4.10.
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Figure 4.9: A curved beam model

Table 4.6: Vertical displacement vA of the curved beam

Mesh CST Allman [26] Allman [28] ACST PBCT
12 x 1 -0.007133 -0.040752 -0.012706 -0.021351 -0.039555
24 x 2 -0.023031 -0.068474 -0.035547 -0.048226 -0.054816
48 x 4 -0.051747 -0.082470 -0.064444 -0.072760 -0.070653
96 x 8 -0.075168 -0.086929 -0.080941 -0.083892 -0.081984
192 x 16 -0.084767 -0.088130 -0.086503 -0.087316 -0.086646
Ref. [47] -0.08734

Table 4.7: Rotation θzA of the curved beam

Mesh Allman [28] ACST PBCT
12 x 1 0.003842 0.006403 0.010946
24 x 2 0.010731 0.014528 0.015741
48 x 4 0.019446 0.021946 0.020902
96 x 8 0.024417 0.025306 0.024590
192 x 16 0.026091 0.026337 0.026096
Ref. -
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Figure 4.10: Vertical displacement −vA and rotation θzA of the curved beam

4.6.6 Cook's problem

Cook's problem is a standard benchmark problem introduced by Cook in Ref. [48], and it is

regularly used for testing new membrane �nite elements. It can be described as a deep tapered

cantilever beam subjected to a uniformly distributed shear unit load at its end, as shown in Fig.

4.11. The element properties are E = 1.0, ν = 1/3 and t = 1.0.

Tables 4.8 and 4.8, and Fig. 4.12 show that the element presented by Allman in Ref. [26] is

performing the best on this numerical example, and that the ACST element follows its perfor-

mance closely. The PBCT element, however, does not seem to be particularly e�cient on Cook's

problem as its performance is slightly better than that of the CST element.

Table 4.8: Vertical displacement vA of the Cook's problem

Mesh CST Allman [26] Allman [28] ACST PBCT
2 x 2 11.993 20.084 16.127 18.651 14.826
4 x 4 18.284 22.708 20.915 21.893 19.538
8 x 8 22.022 23.611 23.007 23.250 22.331
16 x 16 23.412 23.872 23.683 23.734 23.460
32 x 32 23.815 23.941 23.882 23.891 23.816
Ref. [32] 23.96
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Figure 4.11: Model of Cook's problem

Figure 4.12: Vertical displacement vA and rotation θzA of the Cook's problem
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Table 4.9: Rotation θzA of the Cook's problem

Mesh Allman [28] ACST PBCT
2 x 2 0.55646 0.71912 0.49434
4 x 4 0.78067 0.84299 0.69877
8 x 8 0.87389 0.87191 0.81456
16 x 16 0.89339 0.88471 0.87082
32 x 32 0.89545 0.88788 0.88646
Ref. -

4.7 Conclusions

Two new three-node membrane �nite elements with true rotations named ACST and PBCT

are presented. The ACST element is developed by assuming strains in the element centroid,

while satisfying the classical theory of plane elasticity de�nition of rotation. These strains are

derived from a high performing element presented by Allman in Ref. [26] and modi�ed for better

performance. The PBCT element is developed by pursuing an element capable of achieving the

exact response for arbitrary pure bending problems. Though such element has not been found,

the PBCT element partially ful�ls this quest as it is capable of achieving the exact response for

pure bending problems in which the principal axes of the problem solution coincide with the x

and y axes, regardless of the �nite element mesh and the Poisson's ratio.

The ACST element passes the patch test for the constant strain state regardless of the element

size, so that the convergence towards a solution can be reliably expected in all cases. That is

also the case with the PBCT element, which passes the constant strain patch test only when the

size of the elements become in�nitesimal, even though the element formulation itself is capable

of providing the exact strains regardless of the element size. In addition, the presented elements

have a correct rank, i.e., they are free of spurious zero-energy modes, which is something that

has not proven to be easily achieved for membrane �nite elements with rotational degrees of

freedom.

A decent and consistent performance in all the analysed benchmark problems can be observed

for the ACST element, with no noticeable weaknesses. It can also be observed that the ACST

element has marginally lower performance than the element presented by Allman in Ref. [26].

However, it should be noted that that element has a spurious zero-energy mode and that its

rotational degrees of freedom are not true rotations, which is something that contributes to its

higher performance, but also limits its application. Moreover, the element presented later by

Allman in Ref. [28], which is an upgrade of the element presented in Ref. [26] in terms of the

displacement interpolation order (quadratic to cubic), has true rotations at the nodes and is
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actually exhibiting lower performance overall (in respect to the ACST element as well). Due

to the fact that the strains at the element nodes are for this element obtained the same as for

the CST element, Allman regards this element as the constant strain triangle with added drilling

rotations, rather than an upgraded element presented previously in Ref. [26].

As for the PBCT element, it shows remarkable performance in problems in which the principal

axes of the problem solution coincide with the coordinate axes. However, in other cases its

performance is not as good which is something that can be best seen in the Pure bending of a

cantilever beam example (Subsection 4.6.3), which also indicates that the element formulation

is, unfortunately, not invariant. This undesirable property makes the element inappropriate for

general application, but it may still �nd its usage in speci�c problems due to its pure bending

capabilities. Such problems may include certain (research) applications conducted by �nite

element specialists in which the principal axes of the problem solution are a priori known and

the user would bene�t from faster computation since dense �nite element meshes would not be

required.

With that, the ACST element, though not outstanding in its performance, is very much ap-

propriate for practical application because it: has true rotations as rotational degrees of freedom,

has a correct rank, is capable of passing the constant strain patch test regardless of the element

size, is computationally inexpensive, has good and consistent performance in all cases. All this

makes it a strong candidate for a default membrane �nite element inside a �nite element analysis

software, as it checks all the necessary requirements.

The ACST element is considered later in Chapter 5 to make the in-plane membrane part in

a �at shell �nite element formulation, whereas the non-invariance problem of the PBCT element

is to be investigated in the future.
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Chapter 5

Flat shell �nite elements

5.1 Introduction

Since shell structures are generally curved in shape, it is only natural to apply appropriate

curved shell theories and employ curved shell �nite elements in their analyses. To date, many

shell theories have been proposed, but they all share di�culties in deriving governing equations

and they all turn out to be rather complex. As a consequence, development of curved shell

�nite elements is no easy feat, and all the requirements such elements should satisfy are quite

challenging to ful�l.

Conveniently, �at shell �nite elements can adequately represent curved surfaces, provided

that the �nite element mesh is reasonably dense enough. This physical approximation becomes

more and more accurate with the �nite element mesh re�nement (Fig. 5.1), and with that, it

is expected that the convergence to the correct result shall occur. The experience in analysing

numerous curved shell problems suggest that that is indeed the case [6].

Triangular �at shell �nite elements are particularly convenient as they are geometrically very

well suited to model shell structures of arbitrary shape, and unlike quadrilateral elements, they

Figure 5.1: Mesh re�nement of a hemisphere quadrant with a hole at the pole with triangular
�at shell elements
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can not be warped, nor su�er from potential warping issues, which makes them a popular choice.

With the discretisation of a curved shell surface, straight �nite element edges always make up

for a �at triangular element, whereas a quadrilateral element may become warped, as shown in

Fig. 5.2.

Figure 5.2: Warped quadrilateral element

Flat shell �nite element formulation allows for the decoupling of in-plane and out-of-plane

e�ects at the element level, i.e., in-plane membrane part and out-of-plane plate bending part can

be taken as two mutually independent parts. Such approach is typical as it o�ers both simplicity

and practicality. Additionally, there is a property of generality in the �nite element formulation

as no particular shell theory is imposed.

The commonly used three-node �at shell �nite element is formed with the CST and the

DKT elements making up for the in-plane and the out-of-plane part, respectively. However, such

element has two de�ciencies. First, it has �ve degrees of freedom in its local plane due to the

absence of the drilling rotations in the CST element formulation, and second, it disregards the

out-of-plane shear strains contribution, which follows from the DKT element concept.

The �rst de�ciency results in the singularity of the global sti�ness matrix if all the elements

meeting at a node are coplanar. This problem is usually �xed by introducing an arti�cial drilling

sti�ness that satis�es the element equilibrium in a weak sense. However, this approach generally

results in a sti�er response of the model due to the added sti�ness that has no physical back-

ground. In addition, fully compatible connections at the nodes may not be always achievable.

This would depend on the �nite element type, position and orientation in space, e.g., the beam

element end rotation at the node that corresponds to the missing or arti�cial drilling rotation of

the shell element.

The second de�ciency is typically not an issue since many shell structures are usually thin, in

which the out-of-plane shear strains are signi�cantly smaller than the bending ones, and mostly

negligible. In any case, the fact that the application of such element is limited to thin shell cases
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remains.

One of the main objectives of this thesis is to provide a three-node �at shell �nite element

free of these de�ciencies, while being e�ective and robust so it could be reliably used in all cases.

The sixth degree of freedom (the drilling rotation) is provided in a physically correct way by the

ACST element, whereas the contribution of the out-of-plane shear strains is recognised by the

T3-U3, T3-LSC and T3-LSI elements.

5.2 Sti�ness matrix

Since a �at shell �nite element can be arbitrarily positioned in space, transformation from the

global to the local element system1 is carried out �rst, as it would be impractical to form the

element sti�ness matrix in the global system directly. The �at shell �nite element sti�ness matrix

is then formed by taking the sti�ness matrix components of the out-of-plane plate bending and

the in-plane membrane parts that are given in Eqs. (3.30) and (4.36) in the local system, and

connecting them to the corresponding local unknown nodal degrees of freedom.

Local sti�ness matrix for the element node i can be written as



Km
e
ui,ui

Km
e
ui,vi 0 0 0 Km

e
ui,θzi

Km
e
vi,ui

Km
e
vi,vi 0 0 0 Km

e
vi,θzi

0 0 Kp
e
wi,wi

Kp
e
wi,θxi

Kp
e
wi,θyi

0

0 0 Kp
e
θxi,wi

Kp
e
θxi,θxi

Kp
e
θxi,θyi

0

0 0 Kp
e
θyi,wi

Kp
e
θyi,θxi

Kp
e
θyi,θyi

0

Km
e
θzi,ui

Km
e
θzi,vi

0 0 0 Km
e
θzi,θzi


, (5.1)

in which the indices represent the corresponding local unknown degrees of freedom. The mutual

independence of the in-plane and the out-of-plane e�ects in the local system can be clearly

observed from the local sti�ness matrix. Vector of local unknown degrees of freedom for the

element node i can be written as

{
ui vi wi θxi θyi θzi

}T

. (5.2)

After the formation of the local sti�ness matrix, transformation of the same is carried out back

to the global system.

1The local element system is de�ned within the plane of the element.
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5.3 Numerical examples

In this section, combinations of the presented plate and membrane �nite elements (with the

exception of the PBCT element) are analysed on a variety of standard benchmark examples, and

the results are compared to the commonly employed CST and DKT combination. Additionally,

the CST element is joined with the presented plate elements, and the ACST element is joined

with the DKT element. All numerical examples were performed in FEAP.

5.3.1 Spherical shell problem

First numerical example is a doubly-curved shell problem introduced in Ref. [47]. It is a hemi-

sphere with a hole at the pole loaded by four concentrated forces alternating in sign at π/2

intervals on the equator. The element properties are E = 6.825E+07, ν = 0.3, k = 5/6 and

t = 0.04. Due to the orthogonal symmetry of the problem, only quarter of the hemisphere is

analysed, as shown in Fig. 5.3.

Figure 5.3: Spherical shell problem model
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Table 5.1 and Fig. 5.4 indicate locking behaviour when the ACST element forms the mem-

brane part, whereas no locking can be observed when the CST element is employed instead.

With the �nite element mesh re�nement, the locking behaviour fades rapidly. A shell element

performs much better when the assumed strain elements T3-LSC and T3-LSI are, instead of

the displacement-based T3-U3 element, joined with the CST element. When joined with the

ACST element, the di�erence is not so pronounced due to the locking of the membrane part. In

addition, the CST + T3-LSC combination seems to converge to a slightly higher value than the

other combinations.

Table 5.1: Horizontal displacement uA of the spherical shell problem

Mesh CST + DKT CST + T3-U3 CST + T3-LSC CST + T3-LSI
4 x 4 0.092519 0.051187 0.095273 0.096711
8 x 8 0.092699 0.082023 0.095080 0.095029
16 x 16 0.092364 0.090631 0.094338 0.093579
32 x 32 0.092795 0.092602 0.094514 0.093413
64 x 64 0.093263 0.093254 0.094819 0.093586
Mesh ACST + DKT ACST + T3-U3 ACST + T3-LSC ACST + T3-LSI
4 x 4 0.004056 0.002799 0.004040 0.003985
8 x 8 0.027745 0.024197 0.027674 0.027841
16 x 16 0.078898 0.077216 0.078927 0.079538
32 x 32 0.092233 0.092037 0.092356 0.092678
64 x 64 0.093385 0.093367 0.093461 0.093625
Ref. [47] 0.094

Figure 5.4: Horizontal displacement uA of the spherical shell problem
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5.3.2 Scordelis-Lo roof

Scordelis-Lo roof [49] is a classical benchmark problem analysed next. It is a singly-curved shell

shaped as a barrel vault that is supported on rigid diaphragms at its transverse edges. The roof

is loaded by its own weight, which translate to the loading intensity 90.0 per unit area in the −z

direction. The element properties are E = 4.32E+08, ν = 0.0, k = 5/6 and t = 0.25. Due to the

orthogonal symmetry of the problem, only quarter of the roof is analysed, as shown in Fig. 5.5.

Figure 5.5: Scordelis-Lo roof model

The results shown in Table 5.2 and in Fig. 5.6 point out that the element combinations which

include the out-of-plane shear strains contribution diverge from the correct solution with the �nite

element mesh re�nement when the CST element makes up the membrane part. Conversely, with

the ACST element making up the membrane part, this is no longer the case. Moreover, higher

performance with strong convergence behaviour is observed regardless of the employed plate

bending element.
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Table 5.2: Vertical displacement wA of the Scordelis-Lo roof

Mesh CST + DKT CST + T3-U3 CST + T3-LSC CST + T3-LSI
4 x 4 -0.22215 -0.21476 -0.23425 -0.23101
8 x 8 -0.26421 -0.26294 -0.27973 -0.27740
16 x 16 -0.28956 -0.28934 -0.30908 -0.30647
32 x 32 -0.29764 -0.29830 -0.32208 -0.31970
64 x 64 -0.29980 -0.31157 -0.34111 -0.33798
Mesh ACST + DKT ACST + T3-U3 ACST + T3-LSC ACST + T3-LSI
4 x 4 -0.30813 -0.29160 -0.30930 -0.31106
8 x 8 -0.30072 -0.29917 -0.30219 -0.30233
16 x 16 -0.30047 -0.30025 -0.30138 -0.30149
32 x 32 -0.30051 -0.30052 -0.30105 -0.30123
64 x 64 -0.30053 -0.30075 -0.30100 -0.30118
Ref. [47] -0.3024

Figure 5.6: Vertical displacement −wA of the Scordelis-Lo roof

5.3.3 Pinched cylinder

A pinched cylinder with diaphragms at its ends is another frequently analysed shell problem. The

cylinder is pinched with two opposing unit point loads acting on its mid section. The element

properties are E = 3.0E+06, ν = 0.3, k = 5/6 and t = 3.0. As the problem is characterised by

a double symmetry, only one octant of the cylinder is analysed, as shown in Fig. 5.7.
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Figure 5.7: Pinched cylinder model

In this numerical example, very little di�erence can be discerned between the results obtained

with either the CST or the ACST element forming the membrane part, and the performance of

di�erent element combinations is fairly similar, as shown in Table 5.3 and in Fig. 5.8. However,

on very dense meshes2 (not shown here) the combinations which include the out-of-plane shear

strains contribution and the CST element start to diverge from the correct solution.

2More than 64 x 64.
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Table 5.3: Vertical displacement wA of the pinched cylinder

Mesh CST + DKT CST + T3-U3 CST + T3-LSC CST + T3-LSI
4 x 4 -8.9853E-06 -5.5166E-06 -7.5855E-06 -8.2486E-06
8 x 8 -1.5751E-05 -1.2911E-05 -1.4356E-05 -1.4928E-05
16 x 16 -1.7776E-05 -1.6814E-05 -1.7210E-05 -1.7452E-05
32 x 32 -1.8174E-05 -1.8050E-05 -1.8082E-05 -1.8213E-05
64 x 64 -1.8259E-05 -1.8419E-05 -1.8401E-05 -1.8543E-05
Mesh ACST + DKT ACST + T3-U3 ACST + T3-LSC ACST + T3-LSI
4 x 4 -1.0268E-05 -5.0144E-06 -8.3661E-06 -9.2006E-06
8 x 8 -1.5777E-05 -1.2733E-05 -1.4307E-05 -1.4971E-05
16 x 16 -1.7785E-05 -1.6819E-05 -1.7176E-05 -1.7439E-05
32 x 32 -1.8188E-05 -1.8059E-05 -1.8052E-05 -1.8148E-05
64 x 64 -1.8263E-05 -1.8353E-05 -1.8310E-05 -1.8366E-05
Ref. [27] -1.8248E-05

Figure 5.8: Vertical displacement −wA/10
−4 of the pinched cylinder

5.3.4 Twisted beam

The next numerical example is a twisted cantilever beam introduced in Ref. [47]. The beam is

longitudinally straight with a linearly varying twist angle in the transverse direction with respect

to the beam axis that goes from the clamped end to the free end of the beam, making up for the

total twist angle of π/2. Two load cases are considered in this numerical example, both being

uniformly distributed shear unit loads at the free end of the beam, where the �rst one is in the

in-plane direction, and the second one is in the out-of-plane direction of the beam model edge,

as shown in Fig. 5.9. The element properties are E = 2.9E+07, ν = 0.22, k = 5/6 and t = 0.32.
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Figure 5.9: Twisted beam models
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Similarly to the last two numerical examples, the results shown in Tables 5.4-5.5 and in

Figs. 5.10-5.11 also point out that the element combinations which include the out-of-plane

shear strains contribution do not converge to the correct solution when joined with the CST

element. However, in this numerical example the divergence occurs more rapidly as the model

gets more and more re�ned. Again, with the ACST element forming the membrane part of the

shell formulation, convergence to the correct solution is observed for all combinations. In that

case, the di�erence in the performance between these combinations is almost negligible, which

indicates the dominance of the membrane part in this problem.

Table 5.4: Vertical displacement wA of the twisted beam for the in-plane load case

Mesh CST + DKT CST + T3-U3 CST + T3-LSC CST + T3-LSI
6 x 1 0.0053366 0.0053313 0.0056618 0.0060853
12 x 2 0.0053273 0.0053936 0.0058156 0.0063805
24 x 4 0.0053670 0.0060378 0.0066195 0.0073411
48 x 8 0.0053893 0.0098441 0.0105660 0.0113400
96 x 16 0.0053967 0.0249670 0.0258660 0.0263250
Mesh ACST + DKT ACST + T3-U3 ACST + T3-LSC ACST + T3-LSI
6 x 1 0.0047936 0.0047463 0.0047919 0.0047692
12 x 2 0.0053384 0.0053369 0.0053452 0.0053388
24 x 4 0.0053906 0.0053976 0.0053977 0.0053987
48 x 8 0.0053974 0.0054098 0.0054084 0.0054105
96 x 16 0.0053989 0.0054142 0.0054134 0.0054144
Ref. [47] 0.005424

Table 5.5: Horizontal displacement vA of the twisted beam for the out-of-plane load case

Mesh CST + DKT CST + T3-U3 CST + T3-LSC CST + T3-LSI
6 x 1 0.0013383 0.0013327 0.0014307 0.0015762
12 x 2 0.0014651 0.0014836 0.0015942 0.0017599
24 x 4 0.0016208 0.0018014 0.0019461 0.0021504
48 x 8 0.0017092 0.0029232 0.0030821 0.0033360
96 x 16 0.0017391 0.0074801 0.0076478 0.0079002
Mesh ACST + DKT ACST + T3-U3 ACST + T3-LSC ACST + T3-LSI
6 x 1 0.0014289 0.0014079 0.0014222 0.0014198
12 x 2 0.0016602 0.0016596 0.0016587 0.0016613
24 x 4 0.0017251 0.0017268 0.0017252 0.0017269
48 x 8 0.0017434 0.0017455 0.0017445 0.0017454
96 x 16 0.0017483 0.0017506 0.0017502 0.0017505
Ref. [47] 0.001754
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Figure 5.10: Vertical displacement wA of the twisted beam for the in-plane load case

Figure 5.11: Horizontal displacement vA of the twisted beam for the out-of-plane load case
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5.3.5 Raasch challenge

Raasch challenge [50] or Raasch's hook is the last numerical example analysed here, and it is the

most recently proposed one. It is a curved cantilever beam whose shape resembles a hook, and

it is loaded by an in-plane uniformly distributed shear unit load at its free end, as shown in Fig.

5.12. The element properties are E = 3300.0, ν = 0.35, k = 5/6 and t = 2.0.

Figure 5.12: Raasch's hook model

Unlike the previous numerical examples, in this one the out-of-plane shear strains are not

negligible, as it can be deduced from Table 5.6 and Fig. 5.13. Again, the element combinations

which include the out-of-plane shear strains contribution rapidly diverge from the correct solution

with the mesh re�nement of the model when joined with the CST element. As it is the case with

all previous numerical examples, all element combinations that include the ACST element are

convergent.
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Table 5.6: Vertical displacement wA of the Raasch's hook

Mesh CST + DKT CST + T3-U3 CST + T3-LSC CST + T3-LSI
9 x 1 4.2448 3.9630 4.4969 4.6830
18 x 2 4.5665 4.5416 4.8125 5.2933
36 x 4 4.6724 4.8218 5.2440 5.8664
72 x 8 4.7024 6.1880 6.9333 7.6586
144 x 16 4.7105 12.954 13.853 14.567
Mesh ACST + DKT ACST + T3-U3 ACST + T3-LSC ACST + T3-LSI
9 x 1 4.2115 3.9377 4.4127 4.3636
18 x 2 4.5642 4.5467 4.6790 4.7224
36 x 4 4.6722 4.7166 4.7893 4.8369
72 x 8 4.7027 4.8369 4.8833 4.9080
144 x 16 4.7106 4.9476 4.9668 4.9746
Ref. [50] 4.9352

Figure 5.13: Vertical displacement wA of the Raasch's hook

5.4 Conclusions

Various combinations of the in-plane membrane part and the out-of-plane plate bending part

of the shell �nite element formulation have been subjected to the benchmark problems. The

commonly employed CST + DKT combination, which exhibits good convergence properties and

performance overall, is used for comparative purposes with respect to the newly presented ones.

Its de�ciencies are not actually showing in these problems as the problems themselves do not

provoke the same, nor are meant to do so.

The �rst de�ciency, which is linked to the missing (or arti�cial) drilling degree of freedom,

can be �xed by employing the ACST element instead, which has a theoretically correct imple-
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mentation of the same. This eliminates the need for the introduction of some arti�cial sti�ness

into the element formulation.

As for the second de�ciency, a plate bending element which recognises the out-of-plane shear

strains contribution is to be used instead of the DKT element. However, in that case, the CST

element should not make up the membrane part of the shell �nite element formulation any more.

The benchmark problems have shown that such combinations do not converge to the correct

solution, and in some problems, the divergence is substantial, as shown in the Twisted beam (Sub-

section 5.3.4) and in the Raasch challenge (Subsection 5.3.5). Interestingly, the only exception

is the Spherical shell problem (Subsection 5.3.1).

Conversely, the combinations that include the presented �nite elements converge to the correct

solution with the �nite element mesh re�nement of the model in all tested benchmark problems.

The main di�erence in performance between these combinations is in the plate bending element,

as the ACST element is the only proposed element used for the in-plane membrane part of the

shell �nite element formulation.

Similarly to the results of the plate benchmark problems shown in Section 3.5, the combina-

tions that include the T3-LSI element seem to be the most e�cient. However, they are quickly

followed by those that include the T3-LSC and the T3-U3 element, respectively.

The only drawback with the combinations that include the presented �nite elements is a

peculiar locking behaviour that manifests in the Spherical shell problem on coarse meshes, and

which appears to be linked exclusively with the ACST element. Such locking behaviour in �at

shell �nite elements with drilling degrees of freedom has been reported before [12]. However, this

locking fades quickly with the �nite element mesh re�nement of the model.

The presented shell combinations with respect to the CST + DKT combination perform

similarly and have a comparable computational e�ciency. However, the important fact here

is that they are free of the de�ciencies that encompass the regularly employed CST + DKT

combination.

Even though some locking behaviour is observed in the Spherical shell problem when the mesh

is coarse, the same example has quite signi�cant bending strains with respect to the membrane

ones, which is not common to the real life shell structures.

In conclusion, of all the proposed combinations, the ACST + T3-LSI combination stands out

as the best option, and can be reliably used for the analysis of general shell structures.
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Chapter 6

Conclusions

This doctoral thesis consist of three main parts: Mindlin plate �nite elements (Chapter 3),

Membrane �nite elements with rotational degrees of freedom (Chapter 4) and Flat shell �nite

elements (Chapter 5). Each of these three parts have their dedicated conclusions (Sections 3.6,

4.7 and 5.4), and the reader is encouraged to revisit them for more detail and completeness before

continuing here.

In the �rst part, Mindlin plate �nite elements, three new elements T3-U3, T3-LSC and T3-

LSI are presented. They are all based on the two-node Timoshenko beam �nite element with

problem-dependent cubic linked interpolation. This beam element is free of shear locking and

is capable of returning the exact results for certain load cases. The T3-U3 element is developed

by following a classical �nite element displacement-based procedure, whereas the T3-LSC and

T3-LSI elements are developed by following the assumed strain method.

The presented Mindlin plate elements pass the patch test for the constant bending state,

with the T3-U3 and T3-LSI elements capable of passing it regardless of the �nite element size.

The criterion of passing the patch test ensures convergence to the correct solution with the

�nite element mesh re�nement, and the analysed plate benchmark problems indicate that that

is indeed the case.

However, the displacement based T3-U3 element exhibits shear locking behaviour on certain

(very) thin plate examples when the mesh is coarse, while the assumed strain T3-LSC and T3-LSI

elements are completely free of it. They are also less demanding than the T3-U3 element from a

computational point of view. Additionally, the T3-LSC element does not always yield accurate

moments when the plate is (very) thin. Other than that, these elements have no additional

de�ciencies.
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As for the performance, the benchmark problems indicate that the presented elements are

e�ective and comparable to other high performing elements from the literature. The T3-LSI

element with its higher performance stands out in particular. Moreover, it has not shown any

weaknesses in the benchmark problems. With that, it is very much suitable for the practical

application.

In the second part of the thesis, membrane �nite elements with rotational degrees of freedom,

two new elements ACST and PBCT are presented. These two elements are developed in such

a way that the rotational degrees of freedom are the true nodal rotations. This is achieved

by having the displacement �elds interpolations satisfy the classical theory of plane elasticity

de�nition of rotation, which in turn ensures that the �nite element analysis always yields true

nodal rotations.

Having the true rotations as the rotational degrees of freedom has some important bene�ts

and advantages, viz. moment loads are permitted, fully compatible connections with other types

of �nite elements are secured in all cases and a global sti�ness matrix singularity is always

avoided. For plane elasticity problems, only the �rst one is relevant, whereas for the general

shell problems in which these rotational degrees of freedom are the drilling rotations, all three

are very important.

The ACST element is developed by assuming strains in the element centroid, whereas the

PBCT element is developed by pursuing an element capable of achieving the exact response for

arbitrary pure bending problems. Both elements pass the patch test for the constant strain state,

with the ACST element capable of passing it regardless of the �nite element size. The analysed

benchmark problems show that the presented elements converge to the correct solution, which

is expected since they pass the patch test. Additionally, they are free of spurious zero-energy

modes.

A decent and consistent performance in all the analysed membrane benchmark problems

can be observed for the ACST element, for both displacement and rotation values, and with

no noticeable weaknesses. With all the good properties and no de�ciencies, the ACST element

proves to be perfectly suitable for the practical application.

As for the PBCT element, it exhibits remarkable performance in problems in which the

principal axes of the problem solution coincide with the coordinate axes, and if such problems are

in the pure bending state, the PBCT element is capable of achieving the exact response, regardless

of the �nite element mesh and the Poisson's ratio. However, during the numerical investigation,
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it was found that the PBCT element is, unfortunately, not invariant. This undesirable property

is to be more thoroughly investigated in the future.

In the �nal part of this thesis, �at shell �nite elements, various combinations of the the

in-plane membrane part and the out-of-plane plate bending part of the shell �nite element

formulation have been subjected to the benchmark problems. These combinations include the

presented membrane and Mindlin plate �nite elements, in addition to the CST element and the

DKT element.

The combinations that include the CST element and the presented Mindlin plate elements

are dismissed as they diverge from the correct solution with the �nite element mesh re�nement

in most cases. However, all the combinations that include the presented ACST element are con-

vergent in all analysed shell benchmark problems, including the combinations with the presented

Mindlin plate elements.

The presented combinations are also free of the de�ciencies that encompass the regularly

employed CST + DKT combination, viz. the missing (or arti�cial) drilling degree of freedom

and the dismissal of the out-of-plane shear strains contribution. This important fact makes them

very much suitable for the practical application.

However, certain locking behaviour emerged in one of the analysed benchmark problems,

which is linked to the in-plane membrane part. Notwithstanding, the locking fades away rapidly

with the �nite element mesh re�nement of the model. Future work may include more thorough

investigation regarding this issue.

The performance and computational e�ciency of the presented �nite element combinations

is comparable to that of the commonly used CST + DKT combination, with the ACST + T3-

LSI combination standing out as the best option, since it exhibits slightly higher performance.

Additionally, these two elements individually have not shown any weaknesses in their respective

problems.

To conclude, the ACST + T3-LSI combination that forms the three-node �at shell �nite

element formulation is proposed for the analysis of general shell structures. It drilling rotations

are true rotations and it recognises the out-of-plane shear strains contribution. Additionally, it

has shown good convergence properties and e�ciency. Ultimately, it is highly suitable for the

practical application.

With that, the main objective of this thesis has been ful�lled. New and e�ective three-node

�at shell �nite element for the analysis of general 3D shell structures has been presented and
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validated for the practical application. This has also been done for (very thin to thick) plate

bending problems and plane elasticity (membrane) problems individually, as the contributions

of these two mutually independent parts form the out-of-plane and the in-plane part of the �at

shell �nite element formulation. The concept of decoupling these two parts at the element level

has been recon�rmed as a valid procedure, as convergence to the correct solution with the �nite

element mesh re�nement of the curved shell surfaces is observed for the proposed �at shell �nite

element in all tested benchmark problems.

The linked interpolation approach and the assumed strain method that are utilised here in

the development of the new �nite elements are still proving to be e�ective methods. It has been

shown that even though these methods are not very recent, possibilities for the development

of original and high performing �nite elements still remain. Additionally, the inclusion of true

rotations as the drilling degrees of freedom in the membrane �nite element formulation has yet

again shown its advantages, but more importantly, in the case of �at shell �nite elements which

recognise the shear strains contribution, it has proven to be essential for the convergence to the

correct solution.
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