Weighted Hermite-Hadamard-Type Inequalities by Identities Related to Generalizations of Steffensen's Inequality

Pečarić, Josip; Perušić Pribanić, Anamarija; Smoljak Kalamir, Ksenija

Source / Izvornik: Mathematics, 2022, 10
Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)
https://doi.org/10.3390/math10091505
Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:157:855657
Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna
Download date / Datum preuzimanja: 2024-07-07

Article

Weighted Hermite-Hadamard-Type Inequalities by Identities Related to Generalizations of Steffensen's Inequality

Josip Pečarić ${ }^{1}$, Anamarija Perušić Pribanić ${ }^{2, *(\mathbb{D}}$ and Ksenija Smoljak Kalamir ${ }^{3}$ (D)
1 Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000 Zagreb, Croatia; pecaric@element.hr
2 Faculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 Rijeka, Croatia
3 Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovića 28a, 10000 Zagreb, Croatia; ksmoljak@ttf.hr
* Correspondence: anamarija.perusic@uniri.hr

Abstract

In this paper, we obtain some new weighted Hermite-Hadamard-type inequalities for $(n+2)$-convex functions by utilizing generalizations of Steffensen's inequality via Taylor's formula.

Keywords: weighted Hermite-Hadamard inequality; Steffensen's inequality; Taylor's formula; n convex functions

MSC: 26D15; 26A51

1. Introduction

The Hermite-Hadamard inequality is one of the most important mathematical inequalities. It was discovered independently first by Hermite [1] and later by Hadamard [2]. The classical Hermite-Hadamard inequality provides an estimate from below and above the mean value of convex function $f:[a, b] \rightarrow \mathbb{R}$. More precisely, we have the following.

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

To illustrate the importance of the Hermite-Hadamard inequality, let us mention that the Hermite-Hadamard inequality can be considered as the necessary and sufficient condition for convexity of a function. Furthermore, the Hermite-Hadamard inequality has an important role in numerical analysis, mathematical analysis and functional analysis. Various generalizations, extensions and applications of the Hermite-Hadamard inequality have appeared in the literature (see [3-8]).

In this paper, we consider the weighted Hermite-Hadamard inequality for convex functions given in following theorem (see [8-10]).

Theorem 1. Let $p:[a, b] \rightarrow \mathbb{R}$ be a non-negative function. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, then we have the following:

$$
f(m) \leq \frac{1}{P(b)} \int_{a}^{b} p(x) f(x) d x \leq \frac{b-m}{b-a} f(a)+\frac{m-a}{b-a} f(b)
$$

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article Licensee MDPI, Basel, Switzerland
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ $4.0 /$).
Citation: Pečarić, J.; Perušić Pribanić, A.; Smoljak Kalamir, K. Weighted Hermite-Hadamard-Type Inequalities by Identities Related to Generalizations of Steffensen's
Inequality. Mathematics 2022, 10, 1505. https://doi.org/10.3390/math10091505

Academic Editor: Jaan Janno
Received: 30 March 2022
Accepted: 29 April 2022
Published: 1 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

$$
2
$$

or

$$
\begin{equation*}
P(b) f(m) \leq \int_{a}^{b} p(x) f(x) d x \leq P(b)\left[\frac{b-m}{b-a} f(a)+\frac{m-a}{b-a} f(b)\right] \tag{1}
\end{equation*}
$$

where the following is the case.

$$
P(t)=\int_{a}^{t} p(x) d x \quad \text { and } \quad m=\frac{1}{P(b)} \int_{a}^{b} p(x) x d x
$$

In 1918, Steffensen proved the following inequality (see [11]).
Theorem 2 ([11]). Suppose that f is non-increasing and g is integrable on $[a, b]$ with $0 \leq g \leq 1$ and $\lambda=\int_{a}^{b} g(t) d t$. Then, we have the following.

$$
\begin{equation*}
\int_{b-\lambda}^{b} f(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) d t \tag{2}
\end{equation*}
$$

The inequalities are reversed for f non-decreasing.
Many papers have been devoted to generalizations and refinements of Steffensen's inequality and its connection to other well-known inequalities such as Gauss-Steffensen's, Hölder's, Jenssen-=Steffensen's and other inequalities. A complete overview of the results related to Steffensen's inequality can be found in monographs [12,13].

By using the Mitrinović [14] result in which the inequalities in (2) follow from identities:

$$
\begin{aligned}
\int_{a}^{a+\lambda} f(t) d t & -\int_{a}^{b} f(t) g(t) d t \\
& =\int_{a}^{a+\lambda}[f(t)-f(a+\lambda)][1-g(t)] d t+\int_{a+\lambda}^{b}[f(a+\lambda)-f(t)] g(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) d t & -\int_{b-\lambda}^{b} f(t) d t \\
& =\int_{a}^{b-\lambda}[f(t)-f(b-\lambda)] g(t) d t+\int_{b-\lambda}^{b}[f(b-\lambda)-f(t)][1-g(t)] d t
\end{aligned}
$$

and using Taylor's formulae in points a and b

$$
\begin{aligned}
& f(x)=\sum_{i=0}^{n-1} \frac{f^{(i)}(a)}{i!}(x-a)^{i}+\frac{1}{(n-1)!} \int_{a}^{x} f^{(n)}(t)(x-t)^{n-1} d t \\
& f(x)=\sum_{i=0}^{n-1} \frac{f^{(i)}(b)}{i!}(x-b)^{i}-\frac{1}{(n-1)!} \int_{x}^{b} f^{(n)}(t)(x-t)^{n-1} d t
\end{aligned}
$$

in paper [15], the authors proved the following identities related to generalizations of Steffensen's inequality.

Theorem 3 ([15]). Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is absolutely continuous for some $n \geq 2$ and let $g:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$. Let $\lambda=\int_{a}^{b} g(t) d t$ and let the function G_{1} be defined by the following.

$$
G_{1}(x)= \begin{cases}\int_{a}^{x}(1-g(t)) d t, & x \in[a, a+\lambda], \\ \int_{x}^{b} g(t) d t, & x \in[a+\lambda, b] .\end{cases}
$$

Then, we have the following:

$$
\begin{align*}
\int_{a}^{a+\lambda} f(t) d t & -\int_{a}^{b} f(t) g(t) d t+\sum_{i=0}^{n-2} \frac{f^{(i+1)}(a)}{i!} \int_{a}^{b} G_{1}(x)(x-a)^{i} d x \tag{3}\\
& =-\frac{1}{(n-2)!} \int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t
\end{align*}
$$

and the following is obtained.

$$
\begin{align*}
\int_{a}^{a+\lambda} f(t) d t & -\int_{a}^{b} f(t) g(t) d t+\sum_{i=0}^{n-2} \frac{f^{(i+1)}(b)}{i!} \int_{a}^{b} G_{1}(x)(x-b)^{i} d x \tag{4}\\
& =\frac{1}{(n-2)!} \int_{a}^{b}\left(\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t
\end{align*}
$$

Theorem 4 ([15]). Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is absolutely continuous for some $n \geq 2$ and let $g:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$. Let $\lambda=\int_{a}^{b} g(t) d t$ and let the function G_{2} be defined by the following.

$$
G_{2}(x)= \begin{cases}\int_{a}^{x} g(t) d t, & x \in[a, b-\lambda], \\ \int_{x}^{b}(1-g(t)) d t, & x \in[b-\lambda, b] .\end{cases}
$$

Then, we have the following:

$$
\begin{align*}
\int_{a}^{b} f(t) g(t) d t & -\int_{b-\lambda}^{b} f(t) d t+\sum_{i=0}^{n-2} \frac{f^{(i+1)}(a)}{i!} \int_{a}^{b} G_{2}(x)(x-a)^{i} d x \tag{5}\\
& =-\frac{1}{(n-2)!} \int_{a}^{b}\left(\int_{t}^{b} G_{2}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t
\end{align*}
$$

and the following is obtained.

$$
\begin{align*}
\int_{a}^{b} f(t) g(t) d t & -\int_{b-\lambda}^{b} f(t) d t+\sum_{i=0}^{n-2} \frac{f^{(i+1)}(b)}{i!} \int_{a}^{b} G_{2}(x)(x-b)^{i} d x \tag{6}\\
& =\frac{1}{(n-2)!} \int_{a}^{b}\left(\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t
\end{align*}
$$

Since, in this paper, we will deal with n-convex functions, let us recall the definition of the n-convex function. For more details on convex functions, we refer the interested reader to $[6,8]$.

Let f be a real-valued function defined on the segment $[a, b]$. The divided difference of order n of the function f at distinct points $x_{0}, \ldots, x_{n} \in[a, b]$ is defined recursively (see [8]) by the following.

$$
\begin{gathered}
f\left[x_{i}\right]=f\left(x_{i}\right), \quad(i=0, \ldots, n) \\
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}} .
\end{gathered}
$$

The value $f\left[x_{0}, \ldots, x_{n}\right]$ is independent of the order of the points x_{0}, \ldots, x_{n}.
The definition may be extended to include the case in which some (or all) of the points coincide. Assuming that $f^{(j-1)}(x)$ exists, we define the following.

$$
f[\underbrace{x, \ldots, x}_{j-\text { times }}]=\frac{f^{(j-1)}(x)}{(j-1)!} .
$$

Definition 1 ([8]). A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be n-convex on $[a, b], n \geq 0$, if for all choices of $(n+1)$ distinct points in $[a, b]$, the n - th order divided difference of f satisfies the following.

$$
f\left[x_{0}, \ldots, x_{n}\right] \geq 0
$$

Note that 1 -convex functions are non-decreasing functions and $2-$ convex functions are convex functions. An n-convex function need not to be n-times differentiable; how-
ever, if $f^{(n)}$ exists, then f is n-convex if and only if $f^{(n)} \geq 0$. The following property also holds: if f is an $(n+2)$-convex function, then there exists the n-th derivative $f^{(n)}$, which is a convex function.

The aim of this paper is to use identities related to generalizations of Steffensen's inequality, obtained by using Taylor's formula, to prove new weighted Hermite-Hadamardtype inequalities for $(n+2)$-convex functions.

2. Main Results

In this section, applying identities given in Theorems 3 and 4 and the properties of n-convex functions, we derive new weighted Hermite-Hadamard-type inequalities.

Theorem 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be $(n+2)$-convex on $[a, b]$ and $f^{(n-1)}$ absolutely continuous for $n \geq 2$. Let $g:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$ and $\lambda=\int_{a}^{b} g(t) d t$. Let function G_{1} be defined by the following.

$$
G_{1}(x)= \begin{cases}\int_{a}^{x}(1-g(t)) d t, & x \in[a, a+\lambda], \tag{7}\\ \int_{x}^{b} g(t) d t, & x \in[a+\lambda, b] .\end{cases}
$$

Then, we have the following:

$$
\begin{align*}
& P_{1}(b) \cdot f^{(n)}\left(m_{1}\right) \leq \\
& (n-2)!\left[\int_{a}^{b} f(t) g(t) d t-\int_{a}^{a+\lambda} f(t) d t-\sum_{i=0}^{n-2} \frac{f^{(i+1)}(a)}{i!} \int_{a}^{b} G_{1}(x)(x-a)^{i} d x\right] \tag{8}\\
& \leq P_{1}(b) \cdot\left[\frac{b-m_{1}}{b-a} f^{(n)}(a)+\frac{m_{1}-a}{b-a} f^{(n)}(b)\right]
\end{align*}
$$

where the following is the case:

$$
\begin{equation*}
P_{1}(b)=\frac{1}{(n-1) \cdot n}\left(\int_{a}^{b} g(x)(x-a)^{n} d x-\frac{\lambda^{n+1}}{n+1}\right) \tag{9}
\end{equation*}
$$

and the following is obtained.

$$
\begin{equation*}
m_{1}=a+\frac{1}{(n-1) \cdot n \cdot(n+1) \cdot P_{1}(b)}\left(\int_{a}^{b} g(x)(x-a)^{n+1} d x-\frac{\lambda^{n+2}}{n+2}\right) \tag{10}
\end{equation*}
$$

Proof. Since $f^{(n-1)}$ is absolutely continuous, function f satisfies the conditions of Theorem 3. Therefore, identity (3) holds.

From condition $0 \leq g \leq 1$, function G_{1} defined by (7) is non-negative. Hence, for every $n \geq 2$, we have the following.

$$
\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x \geq 0, \quad t \in[a, b]
$$

Define

$$
p(t)=\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x
$$

Since the function f is $(n+2)$-convex, function $f^{(n)}$ is convex. Furthermore, function p is non-negative, so we can apply Theorem 1 and obtain the following inequality:

$$
\begin{align*}
P_{1}(b) \cdot f^{(n)}\left(m_{1}\right) & \leq \int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t \tag{11}\\
& \leq P_{1}(b) \cdot\left[\frac{b-m_{1}}{b-a} f^{(n)}(a)+\frac{m_{1}-a}{b-a} f^{(n)}(b)\right]
\end{align*}
$$

where $P_{1}(b)$ and m_{1} are given by

$$
P_{1}(b)=\int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) d t
$$

and

$$
m_{1}=\frac{1}{P_{1}(b)} \int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) t d t
$$

By calculating $P_{1}(b)$ and m_{1}, we obtain the following:

$$
\begin{aligned}
P_{1}(b) & =\int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) d t \\
& =\int_{a}^{a+\lambda}\left(\int_{a}^{x}(1-g(s)) d s\right) \frac{(x-a)^{n-1}}{n-1} d x+\int_{a+\lambda}^{b}\left(\int_{x}^{b} g(s) d s\right) \frac{(x-a)^{n-1}}{n-1} d x \\
& =\int_{a}^{a+\lambda} \frac{(x-a)^{n}}{n-1} d x+\lambda \cdot \int_{a+\lambda}^{b} \frac{(x-a)^{n-1}}{n-1} d x-\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right) \frac{(x-a)^{n-1}}{n-1} d x \\
& =\frac{-\lambda^{n+1}}{(n-1) \cdot n \cdot(n+1)}+\int_{a}^{b} g(x) \frac{(x-a)^{n}}{(n-1) \cdot n} d x
\end{aligned}
$$

and

$$
\begin{aligned}
m_{1} & =\frac{1}{P_{1}(b)} \int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) t d t \\
& =\frac{1}{P_{1}(b)} \int_{a}^{b} G_{1}(x)\left(\int_{a}^{x}(x-t)^{n-2} \cdot t d t\right) d x \\
& =\frac{1}{P_{1}(b)} \int_{a}^{b} G_{1}(x)\left(\left.t \cdot \frac{-(x-t)^{n-1}}{n-1}\right|_{a} ^{x}+\int_{a}^{x} \frac{(x-t)^{n-1}}{n-1} d t\right) d x \\
& =\frac{1}{P_{1}(b)} \int_{a}^{b} G_{1}(x)\left(\frac{a \cdot(x-a)^{n-1}}{n-1}+\frac{(x-a)^{n}}{(n-1) \cdot n}\right) d x \\
& =a+\frac{1}{P_{1}(b)} \int_{a}^{b} G_{1}(x) \frac{(x-a)^{n}}{(n-1) \cdot n} d x \\
& =a+\frac{1}{P_{1}(b)}\left(\frac{-\lambda^{n+2}}{(n-1) \cdot n \cdot(n+1) \cdot(n+2)}+\int_{a}^{b} g(x) \frac{(x-a)^{n+1}}{(n-1) \cdot n \cdot(n+1)} d x\right)
\end{aligned}
$$

Using identity (3) for the middle part of the inequality (11), inequality (11) becomes inequality (8). Hence, the proof is completed.

Theorem 6. Let $f:[a, b] \rightarrow \mathbb{R}$ be $(n+2)$-convex on $[a, b]$ and $f^{(n-1)}$ absolutely continuous for $n \geq 2$. Let $g:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$ and $\lambda=\int_{a}^{b} g(t) d t$. Let function G_{1} be defined by (7). If the following is the case:

$$
\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x \leq 0, \quad t \in[a, b]
$$

then we have the following:

$$
\begin{align*}
& P_{2}(b) \cdot f^{(n)}\left(m_{2}\right) \leq \\
& (n-2)!\left[\int_{a}^{b} f(t) g(t) d t-\int_{a}^{a+\lambda} f(t) d t-\sum_{i=0}^{n-2} \frac{f^{(i+1)}(b)}{i!} \int_{a}^{b} G_{1}(x)(x-b)^{i} d x\right] \tag{12}\\
& \leq P_{2}(b) \cdot\left[\frac{b-m_{2}}{b-a} f^{(n)}(a)+\frac{m_{2}-a}{b-a} f^{(n)}(b)\right],
\end{align*}
$$

where

$$
P_{2}(b)=\frac{1}{(n-1) \cdot n}\left(\frac{(a-b)^{n+1}-(a+\lambda-b)^{n+1}}{n+1}+\int_{a}^{b} g(x)(x-b)^{n} d x\right)
$$

and

$$
\begin{aligned}
m_{2}=b+ & \frac{1}{(n-1) \cdot n \cdot(n+1) \cdot P_{2}(b)} \\
& \times\left(\frac{(a-b)^{n+2}-(a+\lambda-b)^{n+2}}{n+2}+\int_{a}^{b} g(x)(x-b)^{n+1} d x\right)
\end{aligned}
$$

Proof. If we assume the following:

$$
\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x \leq 0, \quad t \in[a, b]
$$

then we have the following.

$$
-\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x \geq 0, \quad t \in[a, b]
$$

Now similarly to the proof of Theorem 5 using the following non-negative function:

$$
p(t)=-\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x
$$

and identity (4), we obtain inequality (12). Similarly, we calculate the expressions for $P_{2}(b)$ and m_{2} and obtain the following:

$$
\begin{aligned}
P_{2}(b) & =-\int_{a}^{b}\left(\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x\right) d t \\
& =\int_{a}^{a+\lambda}\left(\int_{a}^{x}(1-g(s)) d s\right) \frac{(x-b)^{n-1}}{n-1} d x+\int_{a+\lambda}^{b}\left(\int_{x}^{b} g(s) d s\right) \frac{(x-b)^{n-1}}{n-1} d x \\
& =\int_{a}^{a+\lambda}(x-a) \frac{(x-b)^{n-1}}{n-1} d x+\lambda \cdot \int_{a+\lambda}^{b} \frac{(x-b)^{n-1}}{n-1} d x-\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right) \frac{(x-b)^{n-1}}{n-1} d x \\
& =\frac{(a-b)^{n+1}}{(n-1) \cdot n \cdot(n+1)}-\frac{(a+\lambda-b)^{n+1}}{(n-1) \cdot n \cdot(n+1)}+\int_{a}^{b} g(x) \frac{(x-b)^{n}}{(n-1) \cdot n} d x
\end{aligned}
$$

and

$$
\begin{aligned}
m_{2} & =-\frac{1}{P_{2}(b)} \int_{a}^{b}\left(\int_{a}^{t} G_{1}(x)(x-t)^{n-2} d x\right) t d t \\
& =-\frac{1}{P_{2}(b)} \int_{a}^{b} G_{1}(x)\left(\int_{x}^{b}(x-t)^{n-2} \cdot t d t\right) d x \\
& =-\frac{1}{P_{2}(b)} \int_{a}^{b} G_{1}(x)\left(\left.t \cdot \frac{-(x-t)^{n-1}}{n-1}\right|_{x} ^{b}+\int_{x}^{b} \frac{(x-t)^{n-1}}{n-1} d t\right) d x \\
& =-\frac{1}{P_{2}(b)} \int_{a}^{b} G_{1}(x)\left(-b \cdot \frac{(x-b)^{n-1}}{n-1}-\frac{(x-b)^{n}}{(n-1) \cdot n}\right) d x \\
& =b+\frac{1}{P_{2}(b)} \int_{a}^{b} G_{1}(x) \frac{(x-b)^{n}}{(n-1) \cdot n} d x \\
& =b+\frac{1}{(n-1) \cdot n \cdot(n+1) \cdot P_{1}(b)} \\
& \times\left(\frac{(a-b)^{n+2}}{n+2}-\frac{(a+\lambda-b)^{n+2}}{n+2}+\int_{a}^{b} g(x)(x-b)^{n+1} d x\right) .
\end{aligned}
$$

Hence, the proof is completed.

Theorem 7. Let $f:[a, b] \rightarrow \mathbb{R}$ be $(n+2)$-convex on $[a, b]$ and $f^{(n-1)}$ absolutely continuous for $n \geq 2$. Let $g:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$ and $\lambda=\int_{a}^{b} g(t) d t$. Let function G_{2} be defined by the following.

$$
G_{2}(x)= \begin{cases}\int_{a}^{x} g(t) d t, & x \in[a, b-\lambda], \tag{13}\\ \int_{x}^{b}(1-g(t)) d t, & x \in[b-\lambda, b] .\end{cases}
$$

Then, the following is obtained:

$$
\begin{align*}
& P_{3}(b) \cdot f^{(n)}\left(m_{3}\right) \leq \\
& (n-2)!\left[\int_{b-\lambda}^{b} f(t) d t-\sum_{i=0}^{n-2} \frac{f^{(i+1)}(a)}{i!} \int_{a}^{b} G_{2}(x)(x-a)^{i} d x-\int_{a}^{b} f(t) g(t) d t\right] \tag{14}\\
& \leq P_{3}(b) \cdot\left[\frac{b-m_{3}}{b-a} f^{(n)}(a)+\frac{m_{3}-a}{b-a} f^{(n)}(b)\right]
\end{align*}
$$

where

$$
P_{3}(b)=\frac{1}{(n-1) \cdot n}\left(\frac{(b-a)^{n+1}-(b-\lambda-a)^{n+1}}{n+1}-\int_{a}^{b} g(x)(x-a)^{n} d x\right)
$$

and

$$
\begin{aligned}
m_{3}=a+ & \frac{1}{(n-1) \cdot n \cdot(n+1) \cdot P_{3}(b)} \\
& \times\left(\frac{(b-a)^{n+2}-(b-\lambda-a)^{n+2}}{n+2}-\int_{a}^{b} g(x)(x-a)^{n+1} d x\right) .
\end{aligned}
$$

Proof. We follow the similar arguments as in the proof of Theorem 5. As function $f^{(n-1)}$ is absolutely continuous, the identity (5) holds. The inequality (14) follows directly from Theorem 1, substituting the non-negative function p by a non-negative function of the following:

$$
p(t)=\int_{t}^{b} G_{2}(x)(x-t)^{n-2} d x
$$

and a convex function f by a convex function $f^{(n)}$, and then using identity (5) for integral $\int_{a}^{b}\left(\int_{t}^{b} G_{2}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t$. Furthermore, we calculate $P_{3}(b)$ and m_{3} as follows.

$$
\begin{aligned}
P_{3}(b) & =\int_{a}^{b}\left(\int_{t}^{b} G_{2}(x)(x-t)^{n-2} d x\right) d t \\
& =\int_{a}^{b-\lambda}\left(\int_{a}^{x} g(s) d s\right) \frac{(x-a)^{n-1}}{n-1} d x+\int_{b-\lambda}^{b}\left(\int_{x}^{b}(1-g(s)) d s\right) \frac{(x-a)^{n-1}}{n-1} d x \\
& =\int_{b-\lambda}^{b}(b-x) \frac{(x-a)^{n-1}}{n-1} d x-\lambda \cdot \int_{b-\lambda}^{b} \frac{(x-a)^{n-1}}{n-1} d x+\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right) \frac{(x-a)^{n-1}}{n-1} d x \\
& =\frac{(b-a)^{n+1}-(b-\lambda-a)^{n+1}}{(n-1) \cdot n \cdot(n+1)}-\int_{a}^{b} g(x) \frac{(x-a)^{n}}{(n-1) \cdot n} d x,
\end{aligned}
$$

$$
\begin{aligned}
m_{3} & =\frac{1}{P_{3}(b)} \int_{a}^{b}\left(\int_{t}^{b} G_{2}(x)(x-t)^{n-2} d x\right) t d t \\
& =\frac{1}{P_{3}(b)} \int_{a}^{b} G_{2}(x)\left(\int_{a}^{x}(x-t)^{n-2} \cdot t d t\right) d x \\
& =\frac{1}{P_{3}(b)} \int_{a}^{b} G_{2}(x)\left(\left.t \cdot \frac{-(x-t)^{n-1}}{n-1}\right|_{a} ^{x}+\int_{a}^{x} \frac{(x-t)^{n-1}}{n-1} d t\right) d x \\
& =\frac{1}{P_{3}(b)} \int_{a}^{b} G_{2}(x)\left(\frac{a \cdot(x-a)^{n-1}}{n-1}+\frac{(x-a)^{n}}{(n-1) \cdot n}\right) d x \\
& =a+\frac{1}{P_{3}(b)} \int_{a}^{b} G_{2}(x) \frac{(x-a)^{n}}{(n-1) \cdot n} d x \\
& =a+\frac{1}{P_{3}(b)}\left(\frac{(b-a)^{n+2}-(b-\lambda-a)^{n+2}}{(n-1) \cdot n \cdot(n+1) \cdot(n+2)}-\int_{a}^{b} g(x) \frac{(x-a)^{n+1}}{(n-1) \cdot n \cdot(n+1)} d x\right) .
\end{aligned}
$$

Hence, the proof is completed.
Theorem 8. Let $f:[a, b] \rightarrow \mathbb{R}$ be $(n+2)$-convex on $[a, b]$ and $f^{(n-1)}$ absolutely continuous for $n \geq 2$. Let $g:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$ and $\lambda=\int_{a}^{b} g(t) d t$. Let function G_{2} be defined by (13). If the following is the case:

$$
\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x \leq 0, \quad t \in[a, b]
$$

then we obtain the following:

$$
\begin{align*}
& P_{4}(b) \cdot f^{(n)}\left(m_{4}\right) \leq \\
& (n-2)!\left[\int_{b-\lambda}^{b} f(t) d t-\sum_{i=0}^{n-2} \frac{f^{(i+1)}(b)}{i!} \int_{a}^{b} G_{2}(x)(x-b)^{i} d x-\int_{a}^{b} f(t) g(t) d t\right] \tag{15}\\
& \leq P_{4}(b) \cdot\left[\frac{b-m_{4}}{b-a} f^{(n)}(a)+\frac{m_{4}-a}{b-a} f^{(n)}(b)\right]
\end{align*}
$$

where

$$
P_{4}(b)=\frac{-1}{(n-1) \cdot n}\left(\frac{(-\lambda)^{n+1}}{n+1}+\int_{a}^{b} g(x)(x-b)^{n} d x\right)
$$

and

$$
m_{4}=b-\frac{1}{(n-1) \cdot n \cdot(n+1) \cdot P_{4}(b)}\left(\frac{(-\lambda)^{n+2}}{n+2}+\int_{a}^{b} g(x)(x-b)^{n+1} d x\right)
$$

Proof. Under the assumption that $\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x \leq 0$, it is obvious that the following is the case:

$$
\begin{equation*}
p(t)=-\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x \tag{16}
\end{equation*}
$$

where it is a non-negative function. Again, replacing $p(t)$ in Theorem 1 by (16) and f by $f^{(n)}$ and then using the identity (6) for

$$
\int_{a}^{b}\left(\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x\right) f^{(n)}(t) d t
$$

we obtain the required inequalities (15). Finally, a simple calculation yields the following:

$$
\begin{aligned}
P_{4}(b) & =-\int_{a}^{b}\left(\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x\right) d t \\
& =\int_{a}^{b-\lambda}\left(\int_{a}^{x} g(s) d s\right) \frac{(x-b)^{n-1}}{n-1} d x+\int_{b-\lambda}^{b}\left(\int_{x}^{b}(1-g(s)) d s\right) \frac{(x-b)^{n-1}}{n-1} d x \\
& =-\int_{b-\lambda}^{b} \frac{(x-b)^{n}}{n-1} d x-\lambda \cdot \int_{b-\lambda}^{b} \frac{(x-b)^{n-1}}{n-1} d x+\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right) \frac{(x-b)^{n-1}}{n-1} d x \\
& =-\frac{(-\lambda)^{n+1}}{(n-1) \cdot n \cdot(n+1)}-\int_{a}^{b} g(x) \frac{(x-b)^{n}}{(n-1) \cdot n} d x
\end{aligned}
$$

and

$$
\begin{aligned}
m_{4} & =\frac{-1}{P_{4}(b)} \int_{a}^{b}\left(\int_{a}^{t} G_{2}(x)(x-t)^{n-2} d x\right) t d t \\
& =\frac{-1}{P_{4}(b)} \int_{a}^{b} G_{2}(x)\left(\int_{x}^{b}(x-t)^{n-2} \cdot t d t\right) d x \\
& =\frac{-1}{P_{4}(b)} \int_{a}^{b} G_{2}(x)\left(\left.t \cdot \frac{-(x-t)^{n-1}}{n-1}\right|_{x} ^{b}+\int_{x}^{b} \frac{(x-t)^{n-1}}{n-1} d t\right) d x \\
& =\frac{-1}{P_{4}(b)} \int_{a}^{b} G_{2}(x)\left(-b \cdot \frac{(x-b)^{n-1}}{n-1}-\frac{(x-b)^{n}}{(n-1) \cdot n}\right) d x \\
& =b+\frac{1}{P_{4}(b)} \int_{a}^{b} G_{2}(x) \frac{(x-b)^{n}}{(n-1) \cdot n} d x \\
& =b-\frac{1}{P_{4}(b)}\left(\frac{(-\lambda)^{n+2}}{(n-1) \cdot n \cdot(n+1) \cdot(n+2)}+\int_{a}^{b} g(x) \frac{(x-b)^{n+1}}{(n-1) \cdot n \cdot(n+1)} d x\right) .
\end{aligned}
$$

Remark 1. If function f is $(n+2)$-concave, the inequalities in Theorems $5-8$ are reversed. This follows from the fact that for $(n+2)$-concave function, we have $-f^{(n+2)} \geq 0$. Hence, $-f^{(n)}$ is convex and we can apply inequality (1) to function $-f^{(n)}$.

Remark 2. The expressions $P_{i}(b)$ and m_{i} for $i=1, \ldots, 4$ can also be achieved by the method introduced in [16]. By this method, we calculate $P_{1}(b)$ and m_{1}. Other expressions can be recaptured in a similar manner.

The value of $P_{1}(b)$ can be obtained from (3) by taking $f(t)=\frac{(t-a)^{n}}{n!}$. Then, $f^{(n)}(t)=1$. Thus, we have the following.

$$
\begin{aligned}
P_{1}(b)=- & (n-2)!\left(\int_{a}^{a+\lambda} \frac{(x-a)^{n}}{n!} d t-\int_{a}^{b} \frac{(x-a)^{n}}{n!} g(t) d t\right) \\
& =-\frac{\lambda^{n+1}}{(n-1) \cdot n \cdot(n+1)}+\int_{a}^{b} \frac{(x-a)^{n}}{(n-1) \cdot n} g(t) d t .
\end{aligned}
$$

Hence, we obtained expression (9).
From Theorem 1, we previously obtained the following.

$$
m_{1}=\frac{1}{P_{1}(b)} \int_{a}^{b}\left(\int_{t}^{b} G_{1}(x)(x-t)^{n-2} d x\right) t d t
$$

To calculate m_{1}, we take function $f(t)=\frac{(t-a)^{n+1}}{(n+1)!}$. Then, $f^{(n)}(t)=t-a$. Hence, from the identity (3), we obtain expression (10).

3. Conclusions

In this paper, we obtained new weighted Hermite-Hadamard-type inequalities for higher order convex functions. We used previously obtained identities related to the generalizations of Steffensen's inequality. Results obtained in this paper can be considered as a starting point for some future work.

Author Contributions: Conceptualization, J.P., A.P.P. and K.S.K.; Writing - original draft, J.P., A.P.P. and K.S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: Croatian Science Foundation (HRZZ 7926) "Separation of parameter influence in engineering modeling and parameter identification".

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hermite, C. Sur deux limites d'une intégrale dé finie. Mathesis 1883, 3, 82 .
2. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171-215.
3. Dinu, C. A weighted Hermite Hadamard inequality for Steffensen-Popoviciu and Hermite- Hadamard weights on time scales, Analele Stiintifice ale Universitatii Ovidius Constanta-Seria. Matematica 2009, 17, 77-90.
4. Abbas, M.I.; Ragusa, M.A. Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions. Appl. Anal. 2021, 1-15. [CrossRef]
5. Niculescu, C.P.; Persson, L.-E. Old and new on the Hermite-Hadamard inequality. Real Anal. Exch. 2004, 29, 663-685. [CrossRef]
6. Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications: A Contemporary Approach; CMS Books in Mathematics; Springer: New York, NY, USA, 2005.
7. Niculescu, C.P.; Stanescu, M.M. The Steffensen-Popoviciu measures in the context of qualiconvex functions. J. Math. Inequal. 2017, 11, 469-483. [CrossRef]
8. Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering 187; Academic Press: San Diego, CA, USA, 1992.
9. Pečarić, J.; Perić, I. Refinements of the integral form of Jensen's and Lah-Ribarič inequalities and applications for Csiszár divergence. J. Inequal. Appl. 2020, 108, 287 [CrossRef]
10. Wu, S. On the Weighted Generalization of the Hermite-Hadamard Inequality and Its Applications. Rocky Mountain J. Math. 2009, 39, 1741-1749. [CrossRef]
11. Steffensen , J.F. On certain inequalities between mean values and their application to actuarial problems. Skand. Actuar. J. 1918, 1918, 82-97. [CrossRef]
12. Jakšetić, J.; Pečarić, J.; Perušić Pribanić, A.; Smoljak Kalamir, K. Weighted Steffensen's Inequality (Recent Advances in Generalizations of Steffensen's Inequality); Monograhps Inequalities 17: Element, Zagreb, 2020.
13. Pečarić, J.; Smoljak Kalamir, K.; Varošanec, S. Steffensen's and Related Inequalities (A Comprehensive Survey and Recent Advances). Monograhps in Inequalities 7. 2014. Available online: http://ele-math.com/static/pdf/books/593-mia07.pdf (accessed on 29 March 2022).
14. Mitrinović, D.S. The Steffensen Inequality; Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika No. 247/273; University of Belgrade: Belgrade, Serbia, 1969; pp. 1-14.
15. Pečarić, J.; Perušić Pribanić, A.; Smoljak Kalamir, K. Generalizations of Steffensen's inequality via Taylor's formula. J. Inequal. Appl. 2015, 207, 1-25. [CrossRef]
16. Barić, J.; Kvesić, L.J.; Pečarić, J.; Ribičić Penava, M. Fejér type inequalities for higher order convex functions and quadrature formulae. Aequat. Math. 2021, 96, 417-430. [CrossRef]
