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Abstract: In order to improve the treatment processes of the drinking water treatment plant (DWTP)
located near the Butoniga reservoir in Istria (Croatia), a prediction of the water quality index (WQI)
was done. Based on parameters such as temperature, pH, turbidity, KMnO4, NH4, Mn, Al and Fe, the
calculation of WQI was conducted, while for the WQI prediction models, along with the mentioned
parameters, O2, TOC and UV254 were additionally used. Four models were built to predict WQI with
a time step of one, five, ten, and fifteen days in advance, in order to improve treatment processes of
the DWTP regarding the changes in raw water quality in the Butoniga reservoir. Therefore, obtained
models can help in the optimization of treatment processes, which depend on the quality of raw
water, and overall, in the sustainability of the treatment plant. Results showed that the obtained
correlation coefficients for all models are relatively high and, as expected, decrease as the number of
prediction days increases; conversely, the number of rules, and related linear equations, depends on
the parameters set in the WEKA modelling software, which are set to default settings which give
the highest values of correlation coefficient (R) for each model and the optimal number of rules. In
addition, all models have high accuracy compared to the measured data, with a good prediction
of the peak values. Therefore, the obtained models, through the prediction of WQI, can help to
manage the treatment processes of the DWTP, which depend on the quality of raw water in the
Butoniga reservoir.

Keywords: water quality index; prediction models; machine learning; water quality; treatment
processes improvement; drinking water treatment plant; Butoniga reservoir

1. Introduction

Nowadays, because of increasing demand for potable water, problems concerning
water quantity and quality are very important, and, indeed, a crucial issue for urban sus-
tainable development and ecological environment [1]. During significant climate changes
and other (mainly human) impacts which currently influence on the quality, quantity and
availability of water and water resources, their proper management is needed. As such, an
adequate supply of safe potable water is vital to human health and survival [2–4].

Water quality is mainly assessed using traditional water quality assessment methods
that measure chemical parameters against established standards [5]. The water quality
index (WQI) is used worldwide for water quality assessment, and to cope with big and
complex water quality data. Moreover, the WQI method is most often used because this
method’s main objective is to turn complex water quality data into understandable and
usable information [6]. Today, various versions of WQI methods are widespread and
are receiving more and more attention all over the world for representing and modeling
water quality data [7]. The WQI method is also a useful tool to manage and/or reveal
the performance and sustainability of the drinking water treatment plant (DWTP) [7,8].
To provide the best treatment efficiency so that the treatment processes are determined
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by prioritizing water quality in a more prominent way in the preferred water source,
DWTPs are constantly changing both in terms of easy operation and functionality. The
most preferred DWTP, which can treat all types of water with a certain quality, regardless
of the water source, is called the conventional DWTP [7]. With these plants, the chemical
and microbiological parameters in water can be treated with sufficient quality. As such,
according to this, treatment plant strategies should be developed considering the reduction
of human health risks and the improvement of water quality after water purification on
DWTP. Moreover, it is important to determine and assess the parameters affecting water
quality [7].

In this research, the WQI method was used to reveal the performance of the Butoniga
DWTP located in Istria (Croatia), together with use of machine learning (ML) tools, if
necessary, to help in the optimization of certain treatment processes which are dependent
on the quality of raw water, and overall, for the sustainability of the DWTP. Calculation
of WQI is based on a number of physical, chemical, and bacteriological parameters [6].
Detailed calculation of WQI is presented in Section 3.2.

A previous modelling attempt regarding a similar problem was done in [7], where the
effluent water quality of a DWTP in Turkey according to WQI and health risk assessment
(HRA) was investigated using principal component analysis (PCA). Other authors, such
as [9–16], used in their research various ML algorithms and artificial intelligence (AI) meth-
ods in predicting WQI. Authors in [9] developed a model for predicting WQI using artificial
neural networks (ANNs), namely, the nonlinear autoregressive neural network (NARNET)
and the long short-term memory (LSTM) deep learning algorithm. Improvement of WQI
prediction was done in research conducted in [10], where prediction was done using ML
algorithms such as multilayer perceptron (MLP), convolutional neural network (CNN) and
LSTM. In other research [11], prediction of WQI was done with ML techniques such as
random forest (RF), neural networks (NN), multinomial logistic regression (MLR), support
vector machine (SVM), and bagged tree models (BTM). In other research [12], eight artificial
intelligence algorithms were used, e.g., MLR, RF, M5P tree, random subspace (RSS), addi-
tive regression (AR), ANNs, support vector regression (SVR), and locally weighted linear
regression (LWLR) to generate WQI prediction. In another study [13], WQI prediction
was done using supervised ML, e.g., MLP, Guassian naïve Bayes (GNB), MLR, stochastic
gradient descent (SGD), k-nearest neighbors (KNN), decision tree (DT), RF, SVM, gradient
boosting classifier (GBC) and bagging classifier (BC). Moreover, various ML models such as
boosting-based algorithms, DT-based algorithms and ANN-based algorithms were used for
predicting WQI in research [14]. ANNs were also used for the WQI model in research [15],
while in research [16], simple prediction of WQI was done through supervised ML,
e.g., simple linear regression (SLR), MLR, and ridge and lasso regression (RLR). This
confirms the fact that the WQI method is used worldwide for water quality assessment.

Previous studies regarding functioning and problems on Butoniga DWTP were made
in studies [17,18]. The first study, [17], describes the first experiences of the use of Butoniga
DWTP for drinking water supply. In addition, this study analyzed raw water quality data
from the Butoniga reservoir, and some management guidelines regarding the Butoniga
reservoir and the related DWTP were given. In the second study, [18], the impact of the
Butoniga reservoir raw water quality on water treatment was considered. This study
provided some interesting conclusions, mentioning that the main problem with the Bu-
toniga reservoir, and thus the related DWTP, appears in the summer months when water
temperature is the most critical parameter, because, in order to be suitable for use and for
treatment processes, water must not exceed the maximum allowable concentration (MAC)
of 25 ◦C, according to Croatian regulations for drinking water [19]. In that time period,
water is captured from the lowest water intake, which captures water from the lowest water
layer in the Butoniga reservoir, which have increased concentrations of manganese (Mn),
iron (Fe), ammonium (NH4) and lower pH values. Increased concentration of Mn, Fe, NH4
and lower pH values of water from the lowest water intake requires enhanced continuous
process control and higher consumption of chemicals for the treatment process on DWTP;
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however, the process is also stable in these conditions, and all samples of the effluent are
in accordance with the Croatian regulations for drinking water [19], while the exceeded
temperature values due to the heating of untreated water from the reservoir cannot be
influenced [18]. This is also the main reason why this research was conducted.

To cope with these problems, the ML technique was applied on data measured at the
intake of raw water from the Butoniga reservoir, which is after the purification process of
the DWTP used for drinking water purposes. The first step was to calculate WQI from a
long-term dataset (2011–2020) consisting of physical and chemical parameters measured
once a day, to obtain usable and understandable information about the water quality of
the Butoniga DWTP. Second, based on calculated WQI, the rule-based ML method in the
form of rule-based models was applied to predict WQI with a time step of one, five, ten
and fifteen days in advance, in order to improve specific treatment processes on the DWTP
regarding changes in raw water quality in the Butoniga reservoir. The rule-based models
for numeric prediction use regression equations in the terminal nodes which allow a more
accurate prediction of the target attribute. The models are interpreted as a set of IF THEN
rules, where each rule is associated with a multivariate linear model (equation). Unlike
other AI-based methods, which provide very good predictions, but sometimes are limited
in terms of interpretability (black box models), the rule-based models tend to be more
descriptive and interpretable (white box models) [20]. Therefore, the specific objective of
this study is to obtain WQI prediction models that can be used in the performance and
optimization of treatment processes which are dependent on the quality of raw water, and
overall, for the sustainability of the Butoniga DWTP.

The paper is organized as follows: Section 2 describes the study area and measured
data used in the modelling exercise. Section 3 describes the modelling method, calculation
of WQI and description of the modelling experiment for the modelling task. In Section 4,
the results are presented, i.e., constructed prediction models. Discussion of the results is
presented in Section 5, and finally, Section 6 contains the conclusions of this research.

2. Study Area and Data Description

For the process of obtaining drinking water on the DWTP, raw water was taken from
the Butoniga reservoir (Figure 1). The Butoniga reservoir is an artificial lake created in 1987
with two main objectives: I) protection from adverse water impacts, and II) drinking water
supply. It has a watershed area of about 73 km2, ranging in elevation from 40 to 500 masl.
The volume of the reservoir is 19.5 million m3, the surface area about 2.5 km2, with an
average depth of 7.8 m and a maximum depth of 17.5 m.

As a small and relatively shallow reservoir, it is very sensitive to eutrophication
and degradation processes caused by climate change and human activities. Known and
conventional pressures in the surrounding watershed include erosion and leaching of
nutrients from agricultural lands, as well as from untreated wastewater from settlements
that are drained to the reservoir through black pits or open sewers [17].

The Butoniga DWTP is located about 600 m downstream from the dam of the Butoniga
reservoir, on an area of 80,000 m2 (Figure 1). The first phase of the Butoniga DWTP is
designed to process 1000 L/s or 3600 m3/h. Parts of the process are designed for a final
capacity of 2000 L/s, which is planned in the second phase. All process units are designed
for 24-h full capacity with a hydraulic reserve of 25%. The plant can operate flexibly
by changing the capacity from 20 to 100% of the nominal capacity. The main drinking
water treatment process (Figure 2) consists of the following units: raw water intake, pre-
ozonation, coagulation–flocculation, flotation, rapid filtration, main ozonation, slow sand
filter, disinfection, final pH correction, pressure pumping and chlorination. The auxiliary
process (Figure 2) of drinking water treatment consists of the following units: station
for cleaning sand from slow sand filters, treatment of water from washing filters, sludge
treatment, and neutralization of wastewater from chemicals. The plant was completed and
put into operation in June 2002, while it has been in continuous operation since the spring
of 2004 [18].
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The operation of the DWTP is mainly related to the tourist season, and, of the
5,000,000 m3 of produced and distributed water annually, 3,000,000 m3 is produced and dis-
tributed during 15 June to 15 September, when the water quality in the Butoniga reservoir
is the worst [18].

As mentioned in the introduction, the main problem with the Butoniga reservoir, and
thus the DWTP, appears in the summer months when the water temperature is the most
critical parameter, and water for the treatment process must be captured from the lowest
layer which have increased concentrations of Mn, Fe, NH4 and lower pH values, and thus
influence the treatment processes [18].

The data set for the calculation and prediction of WQI consists of physical and chemi-
cal parameters measured once a day at the input of raw water to the DWTP, from 2011 to
2020. Physiochemical parameters include temperature (Temp), pH, turbidity (Tur), oxy-
gen concentration (O2), total organic carbon (TOC), potassium permanganate (KMnO4),
ammonia (NH4), manganese (Mn), aluminum (Al), iron (Fe) and the amount of organic
substances (UV254), whose concentrations are determined in the internal laboratory of
the Butoniga DWTP by standard analytical methods according to ISO standards [21] and
standard methods for the examination of water and wastewater [22].

For the calculation of WQI, the following parameters were used: temperature, pH, tur-
bidity, KMnO4, NH4, Mn, Al and Fe; while for the prediction of WQI, along with the other
parameters, oxygen concentration, total organic carbon and UV254 were additionally used.

The data were pre-processed regarding to the modelling and research goal. For the
WQI prediction models, the entire span of the measured data was used, from 2011 to 2020,
while missing data were managed with a cubic spline interpolation.

3. Materials and Methods
3.1. Modelling Methods; Rule-Based Models

Rule-based regression models for numeric prediction are yet another model repre-
sentation, where the models are interpreted as a set of IF THEN rules, where each rule is
associated with a multivariate linear model. A rule indicates that, whenever a case satisfies
all the conditions, the linear model is appropriate for predicting the value of the target
attribute. The algorithms for rule induction mostly represent different variations of the M5
algorithm. The algorithm implemented in a software package WEKA [23] was applied for
modelling, in which the variation of the M5 algorithm (M5P) was enhanced by combining
model-based and instance-based learning [24].

After the rule-based models are constructed from the training (learning) set of data, it
is necessary to assess the model quality, i.e., the accuracy of prediction. This can be done by
simulating the model on a testing set of data and comparing the predicted values of the
target with the actual values. Another option is to employ a cross-validation method. The
given (training) dataset is partitioned into a chosen number of folds (n). In turn, each fold is
used for testing, while the remainder (n−1 folds) is used for training. The final error is the
averaged error of all the models throughout the procedure. The size of the error between
the actual and the predicted values can be calculated by several measures to evaluate the
model accuracy: root mean-squared error, mean absolute error, root relative squared error,
relative absolute error, and correlation coefficient (R) [23].

In this research, for the experiments, the accuracy of the prediction models was
evaluated through the correlation coefficient, and the quality of the models was done using
the cross-validation method in the software package WEKA [23].

3.2. Water Quality Index

To calculate WQI, Croatian drinking water quality standards and recommendations
were used [19], so that the resulting WQI represents water appropriateness for use in the
drinking water supply. The WQI was conducted in three steps.

In the first step, each of the 8 parameters is assigned weight (wi) according to its
relative importance in the total quality of the drinking water (Table 1). A maximum weight
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of 5 is assigned to Mn, Al and Fe as a parameter, which has great impact in water quality
assessment for the Butoniga reservoir and for drinking water production [18]. Furthermore,
temperature, oxygen concentration and UV254 were assigned a minimum weight of 1,
because these parameters are not harmful or toxic at the expected concentrations for
drinking water production [18].

Table 1. Relative weight of each parameter.

Parameter Limit Values [19]
Water Quality Index (WQI)

wi Wi

Temperature 25 ◦C 1 0.034
pH 8 3 0.103

Turbidity 4 NTU 2 0.069
KMnO4 5 mg/L 4 0.138

NH4 0.5 mg/L 4 0.138
Mn 0.05 mg/L 5 0.172
Al 0.2 mg/L 5 0.172
Fe 0.2 mg/L 5 0.172

In the second step, relative weight (Wi) is calculated from the formula:

Wi =
wi

∑n
i w1

, (1)

where Wi is relative weight; wi is the weight of each parameter; and n is the number
of parameters.

Calculated values of the relative weights (Wi) of each parameter are shown in Table 1.
In the third step, the quality based on concentration of the ith parameter (qi) is de-

termined by dividing its concentration in each water sample and its corresponding limit
values according to the Croatian guidelines for drinking water quality standards and
recommendations [19], and the result is multiplied by 100.

qi =
Ci
Si

× 100, (2)

where qi is the rating based on concentration of ith parameter; Ci is the concentration of
each analyzed parameter expressed in mg/L; and Si is the recommendation of Croatian
legislation for each analyzed parameter expressed in mg/L.

To calculate WQI, first, the sub-index for each analyzed parameter (SIi) used for
determination of WQI is determined.

SIi = Wi × qi, (3)

WQI = ∑n
i−1 SIi, (4)

where SIi is the sub-index of each analyzed parameter; qi is the rating based on concentration
of ith parameter; and n is the number of parameters.

If the WQI is calculated with a smaller number of indicators (less than 12), as in this
case, then the sum of sub-indices of all parameters are divided by the sum weighting factors
of available analyzed parameters.

Based on the calculated WQI values, tested water samples are classified into five
categories of “excellent water” to “unfit for drinking” (Table 2) [25].
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Table 2. Water quality classification based on WQI [25].

WQI Water Quality

<50 Excellent
50–100 Good
100–200 Bad
200–300 Very bad

>300 Unfit for drinking

3.3. Description of the Modelling Experiment

The data used for building WQI prediction models are depicted in Table 3. All data
were pre-processed with respect to modelling and research goals based on the knowledge
of modelling experts on the analyzed DWTP. Four models were built to predict WQI one,
five, ten and fifteen days in advance, with the purpose to improve treatment processes on
DWTP regarding changes of raw water quality in the Butoniga reservoir. Therefore, these
models would help to manage treatment processes which are dependent on the quality of
raw water in the Butoniga reservoir.

Table 3. Physico-chemical data used for building models.

Symbol Interpretation Unit

Temp Water temperature -
pH pH -

Turb Turbidity NTU
KMnO4 Potassium permanganate mg/L

NH4 Ammonium mg/L
Mn Manganese mg/L
Al Aluminum mg/L
Fe Iron mg/L
O2 Oxygen concentration mg/L

O2p Oxygen saturation %
TOC Total organic carbon mg/L

UV254 Organic matter in water 1/cm
WQI Calculated water quality index -

WQI_1_day_pred WQI 1 day prediction -
WQI_5_day_pred WQI 5 days prediction -
WQI_10_day_pred WQI 10 days prediction -
WQI_15_day_pred WQI 15 days prediction -

For the experiment, the ML algorithm M5P for rule-based models integrated in the
WEKA modelling software [23] was used. Predicted WQI (one, five, ten and fifteen days)
was set as a target (dependent) variable, whereas water temperature, pH, turbidity, KMnO4,
NH4, Mn, Al, Fe, O2, TOC and UV254 (Table 3) were set as independent variables (descrip-
tors) from which the predicted values of WQI were modelled. The above parameters were
mainly used because they best represent the parts of the system (DWTP) on top of which
the target variable relays.

The aim of all prediction models is to be as much as possible applicable and valid
for the prediction of WQI, meaning that they should perform as accurately as possible.
To achieve this, the most commonly used procedures of building and testing models was
applied; the entire data set was taken for training while validating with 10-fold cross-
validation (see Section 3.1). To achieve the highest correlation coefficient (R) and the
optimal number of rules, default values of parameters for building models were used in
WEKA modelling software [23].

The model performing most accurately according to the validation method was se-
lected as a representative model for the prediction purposes. The accuracy of the models is
evaluated through the correlation coefficient (R).
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4. Results

The models for predicting WQI with a time step of one, five, ten and fifteen days in
advance were built with the M5P algorithm for induction of rule-based models, which was
implemented in the software package WEKA [23]. For the prediction models, the entire
span of the measured data was used, from 2011 to 2020, with daily sampling frequency.
Missing data were managed by using a cubic spline interpolation, and to select the best
model, the model selection procedure described in Section 3.1 was used.

First, the built prediction model with a time step of one day is presented in Table 4.
The model has only one rule/equation with a very high correlation coefficient (R) of 0.93
when tested with 10-fold cross validation. To predict WQI, the following parameters are
needed at present: O2, pH, turbidity, UV254, NH4, Mn, Al, Fe and value of WQI calculated
from present data. Using this data in the prediction model, the WQI with a time step of one
day can be obtained.

Table 4. Prediction model for WQI with a time step of one day (units for the parameters used are
reported in Table 3).

Rule No. Rule Equation

1. - WQI_1_day_pred = −2.1437 × O2 − 6.613 × pH − 0.6083 × Tur + 78.459 × UV254 + 20.5083 × NH4 +
72.6239 × Mn + 168.8286 × Al + 74.7368 × Fe + 0.5695 × WQI + 76.5001

The second prediction model with time step of five days has twelve rules/equations
(Table 5), with also a very high correlation coefficient (R) of 0.81 when tested with 10-fold
cross validation. To predict WQI, all parameters presented in Table 3 are needed at present.
The rule selection depends on the values of the variables in the rule (second column in
Table 5). When a rule is selected, a corresponding equation is applied to obtain the WQI
five days in advance.

Table 5. Prediction model for WQI with a time step of five days (units for the parameters used are
reported in Table 3).

Rule No. Rule Equation

1.

Mn ≤ 0.178
UV254 > 0.05
O2p ≤ 91.263
WQI ≤ 67.5

Temp ≤ 14.647

WQI_5_day_pred = 0.0492 × Temp − 0.1442 × O2 + 0.0116 × O2p +
18.4678 × pH + 0.1147 × Tur + 0.1954 × TOC − 0.0833 × KMnO4 +

1.0771 × UV254 + 0.359 × NH4 + 3.4449 × Mn + 1.4357 × Al + 194.1906 × Fe +
0.0154 × WQI − 117.4061

2.

Mn ≤ 0.178
UV254 > 0.05
NH4 > 0.116
NH4 ≤ 0.217

WQI_5_day_pred = −0.0314 × Temp − 4.0616 × O2 + 0.4277 × O2p −
30.9666 × pH + 0.0146 × Tur + 0.409 × TOC - 0.1268 × KMnO4 +

1.9415 × UV254 + 0.4537 × NH4 + 5.6159 × Mn + 8.273 × Al + 218.0231 × Fe +
0.2294 × WQI + 271.4172

3. Mn ≤ 0.238
UV254 > 0.05

WQI_5_day_pred = −1.3998 × Temp − 3.7955 × O2 + 0.2478 × O2p −
73.5681 × pH + 0.0134 × Tur − 0.0776 × TOC − 13.3644 × KMnO4 −

234.667 × UV254 + 0.4444 × NH4 + 1.6204 × Mn + 1.9645 × Al + 132.2723 × Fe −
0.2347 × WQI + 717.3281

4.

Mn > 0.154
Mn ≤ 0.556
pH > 7.514
Mn > 0.273

NH4 ≤ 0.444
NH4 > 0.168

WQI_5_day_pred = 2.3592 × Temp − 0.344 × O2 − 0.0068 × O2p −
1.3764 × pH + 0.2721 × Tur − 1.6152 × TOC − 19.6394 × KMnO4 −

13.095 × UV254 + 6.8627 × NH4 + 4.9796 × Mn + 45.1687 × Al + 69.3252 × Fe +
0.0377 × WQI + 137.004
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Table 5. Cont.

Rule No. Rule Equation

5.

Mn > 0.154
Mn ≤ 0.625
WQI > 145.5

O2 > 4.29
TOC > 2.144

WQI_5_day_pred = −2.2601 × Temp + 1.0762 × O2 − 0.5878 × O2p −
51.0854 × pH + 4.2073 × Tur + 0.4781 × TOC − 442.8518 × UV254 +

53.2808 × NH4 + 83.5576 × Mn − 462.669 × Al − 14.6656 × Fe +
0.0126 × WQI + 598.894

6. Mn > 0.154
WQI ≤ 145.5

WQI_5_day_pred = −0.1431 × Temp − 15.6738 × O2 + 0.9714 × O2p −
2.2167 × pH + 1.5839 × Tur + 29.7531 × TOC + 3.9299 × NH4 + 119.515 × Mn +

41.3706 × Al + 146.8431 × Fe + 0.4928 × WQI − 18.3667

7.
Mn > 0.196

NH4 ≤ 0.656
Temp > 14.521

WQI_5_day_pred = −0.2457 × Temp + 16.8424 × O2 - 2.17 × O2p - 1.9383 × pH +
4.5045 × Tur + 1.5087 × TOC + 36.4246 × UV254 + 4.2032 × NH4 + 466.3063 × Mn +

68.4722 × Al − 11.5351 × Fe − 1.1276 × WQI + 250.7915

8.
UV254 ≤ 0.051

Tur > 1.77
O2 > 6.671

WQI_5_day_pred = −0.1311 × Temp − 0.8676 × O2 + 0.0209 × O2p −
4.7746 × pH + 0.2683 × Tur − 11.8676 × TOC + 12.0203 × KMnO4 −

1084.1325 × UV254 + 0.9434 × NH4 - 197.3272 × Mn + 28.2832 × Al - 11.6473 × Fe +
0.4091 × WQI + 149.8425

9. UV254 ≤ 0.051
O2 > 6.685

WQI_5_day_pred = −2.1766 × Temp − 12.4999 × O2 + 1.0932 × O2p −
30.7421 × pH + 6.042 × Tur − 9.7481 × TOC + 0.5713 × KMnO4 +
60.3924 × UV254 − 44.7147 × NH4 + 7.7437 × Mn + 55.508 × Al +

69.3385 × Fe + 345.6699

10. UV254 > 0.051
O2 ≤ 1.646

WQI_5_day_pred = −5.4435 × Temp + 1.8677 × O2 − 0.6007 × O2p −
5.9718 × pH − 0.8719 × Tur + 37.473 × TOC + 12.2012 × KMnO4 −

2209.8031 × UV254 − 45.2861 × NH4 + 171.9741 × Mn − 12.49 × Fe + 416.9164

11.
UV254 > 0.051
Temp ≤ 14.146

NH4 > 0.243

WQI_5_day_pred = 7.2088 × O2 − 0.3865 × O2p − 10.7903 × pH + 6.4896 × Tur +
4.3084 × TOC + 7.6783 × KMnO4 + 68.6909 × UV254 − 22.0766 × NH4 −

78.7705 × Mn − 16.5265 × Fe + 173.4252

12. -
WQI_5_day_pred = −12.6524 × Temp − 51.1841 × O2 + 4.544 × O2p −

169.1456 × pH + 43.3802 × KMnO4 + 723.3245 × UV254 + 36.264 × NH4 +
99.2001 × Mn + 1428.6758 × Al + 1506.6314

In Table 6, the third prediction model with a time step of ten days is presented, which
has fourteen rules/equations with a slightly lower correlation coefficient (R) than the
second model of 0.79, but also very high when tested with 10-fold cross-validation. To
predict WQI, all parameters presented in Table 3 are needed at present. The rule selection
is the same as for the second model, which depends on the values of the variables in the
rule, and when a rule is selected, a corresponding equation is applied to calculate the WQI
ten days in advance.

Table 6. Prediction model for WQI with a time step of ten days (units for the parameters used are
reported in Table 3).

Rule No. Rule Equation

1.

Mn ≤ 0.161
UV254 > 0.049

Fe > 0.08
pH > 7.903

UV254 ≤ 0.07

WQI_10_day_pred = 1.5616 × Temp − 0.1592 × O2 + 0.2154 × O2p +
31.8486 × pH − 0.1474 × Tur + 16.4278 × TOC + 0.0481 × KMnO4 −

6.5069 × UV254 + 0.3496 × NH4 − 0.7361 × Mn + 2.4 × Al + 246.8828 × Fe +
0.0231 × WQI − 292.6473

2.

Mn ≤ 0.228
UV254 > 0.049

O2 > 6.037
TOC > 2.068

WQI_10_day_pred = −1.3609 × Temp − 10.3742 × O2 + 1.3011 × O2p −
33.9897 × pH − 3.2088 × Tur + 0.0438 × TOC − 565.14 × UV254 + 0.3834 × NH4 +

65.7253 × Mn − 221.5725 × Al + 188.8055 × Fe + 0.1485 × WQI + 360.0167
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Table 6. Cont.

Rule No. Rule Equation

3.
Mn > 0.131
pH > 7.63
Mn ≤ 0.42

WQI_10_day_pred = 1.5174 × Temp − 0.4902 × O2 + 0.0296 × O2p −
1.0916 × pH − 2.1281 × Tur + 0.0978 × TOC − 362.8943 × UV254 + 58.198 × NH4 +

11.7774 × Mn + 436.819 × Al + 110.5269 × Fe + 0.1953 × WQI + 70.6604

4. Mn > 0.147
WQI_10_day_pred = −4.7909 × Temp − 29.3983 × O2 + 1.9398 × O2p +

27.2021 × pH − 3.6554 × Tur + 0.4596 × TOC + 36.9032 × NH4 + 176.6099 × Mn +
556.3115 × Al + 56.7678 × Fe − 0.3055 × WQI + 79.0885

5.
UV254 ≤ 0.05
Tur ≤ 1.349

Temp > 13.085

WQI_10_day_pred = −1.1396 × Temp − 6.1336 × O2 + 0.4967 × O2p −
31.8387 × pH + 0.4681 × Tur − 13.8161 × TOC + 5.2705 × KMnO4 +

90.5952 × UV254 − 4.0772 × NH4 − 234.7263 × Mn − 22.4896 × Al + 8.6443 × Fe +
0.041 × WQI + 349.673

6.
UV254 > 0.05

Al ≤ 0.002
Temp ≤ 19.35

WQI_10_day_pred = 0.0935 × Temp + 12.3922 × O2 − 1.4555 × O2p −
21.8854 × pH + 4.3067 × Tur + 31.5541 × TOC − 28.5229 × KMnO4 −
107.7914 × UV254 + 15.9927 × NH4 + 21.5347 × Al + 131.9561 × Fe −

0.7713 × WQI + 263.7697

7. UV254 > 0.05
UV254 > 0.052

WQI_10_day_pred = 9.6063 × Temp + 36.7844 × O2 - 3.7629 × O2p - 29.6123 × pH +
14.0689 × Tur + 7.3178 × TOC - 66.8263 × UV254 + 439.762 × Mn - 692.8787 × Al −

313.2304 × Fe + 0.0563 × WQI + 146.4862

8.
UV254 ≤ 0.048

O2 ≤ 7.389
pH > 7.755

WQI_10_day_pred = −0.3282 × Temp − 8.0303 × O2 + 0.5504 × O2p +
37.8754 × pH + 18.7798 × Tur + 3.8309 × TOC + 339.0088 × UV254 −

62.2836 × NH4 − 173.1733 × Mn − 83.2919 × Al + 21.4339 × Fe +
0.0471 × WQI − 263.5586

9.
UV254 ≤ 0.049

pH > 7.785
Tur ≤ 1.468

WQI_10_day_pred = −0.2551 × Temp − 0.1407 × O2 − 11.9135 × pH +
9.0883 × Tur − 5.6761 × TOC + 7.0392 × KMnO4 + 406.0863 × UV254 −

29.4935 × Mn − 60.929 × Al + 69.954 × Fe + 109.2525

10.
Tur > 1.504
pH > 7.762
pH ≤ 8.157

WQI_10_day_pred = 0.6663 × Temp + 0.2275 × O2 − 11.1661 × pH +
4.3653 × Tur − 8.2495 × TOC + 5.6081 × KMnO4 + 564.6441 × UV254 −

10.1607 × NH4 − 92.4626 × Mn + 216.0347 × Fe − 0.4035 × WQI + 109.4049

11.

WQI > 38.5
O2 > 6.874

Tur ≤ 2.111
O2 > 8.921

WQI_10_day_pred = −3.2172 × Temp − 0.7486 × O2 − 59.4558 × pH −
0.6238 × Tur + 6.9855 × TOC + 8.644 × KMnO4 + 1134.6654 × UV254 −

174.1622 × Al − 55.1062 × Fe + 0.2754 × WQI + 496.4482

12. UV254 ≤ 0.049
pH > 7.673

WQI_10_day_pred = −1.5223 × Temp + 9.0823 × O2 − 0.84 × O2p −
43.5423 × pH + 8.2979 × Tur + 13.9948 × KMnO4 + 2670.0583 × UV254 + 272.8255

13. Temp > 9.654 WQI_10_day_pred = −7.5086 × Temp − 112.8856 × pH + 69.6063 × TOC + 967.9153

14. - WQI_10_day_pred = −61.5182 × O2 − 751.5462 × Tur + 1847.615

The fourth and final model with a prediction of fifteen days’ time step is presented
in Table 7. The prediction model has only five rules/equations, but with a slightly low
correlation coefficient (R) of 0.71 when tested with 10-fold cross-validation. To predict WQI,
all parameters presented in Table 3 are needed at present. The rule selection is the same
as for other models, from which the WQI can be calculated fifteen days in advance. The
number of rules was expected to be higher as the time step increases and with given default
values of the parameters in WEKA to obtain a higher correlation coefficient and the optimal
number of rules, as explained in Section 3.3; however, surprisingly, the number of rules is
less than for the second and third model.

The correlation between the calculated and the modelled (predicted) values of WQI is
presented on Figure 3, as the correlation coefficient (R). From Figure 3, it can be seen that as
the time step increases, the accuracy of the model slowly decreases as expected: for the one
day prediction model, the correlation coefficient is 0.93; for the five days prediction model,
0.81; for the ten days prediction model, 0.79; and finally, for the fifteen days prediction
model, 0.71.
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Table 7. Prediction model for WQI with a time step of fifteen days (units for the parameters used are
reported in Table 3).

Rule No. Rule Equation

1.

pH > 7.722
Mn ≤ 0.182
Tur > 1.675

Temp ≤ 15.32

WQI_15_day_pred = −2.308 × Temp − 7.9764 × O2 + 1.0935 × O2p +
28.5839 × pH + 3.8658 × Tur + 0.2701 × TOC + 0.183 × KMnO4 −

12.663 × UV254 + 1.2919 × NH4 + 2.8251 × Mn − 224.3635 × Al + 119.207 × Fe +
0.0008 × WQI − 184.4439

2.
pH > 7.703
Mn > 0.134
pH > 7.948

WQI_15_day_pred = −1.1171 × Temp − 9.6787 × O2 + 0.7265 × O2p −
47.8948 × pH − 1.7395 × Tur + 10.9147 × TOC − 16.9889 × KMnO4 −

571.2309 × UV254 + 2.2305 × NH4 + 6.0254 × Mn + 431.2766 × Al + 209.4744 × Fe +
0.0623 × WQI + 518.4762

3.

Mn > 0.134
Mn ≤ 0.52

Temp ≤ 21.01
pH > 7.63

WQI > 114.5

WQI_15_day_pred = −2.3239 × Temp − 4.9107 × O2 + 0.1752 × O2p −
5.5331 × pH − 5.4288 × Tur − 1.1149 × TOC + 7.5097 × NH4 + 145.6845 × Mn +

676.501 × Al + 5.0832 × Fe − 0.0928 × WQI + 201.3688

4.

Mn > 0.134
Temp ≤ 21.065

Tur > 3.084
UV254 ≤ 0.071

WQI_15_day_pred = −0.2501 × Temp + 5.9114 × O2 + 0.2627 × O2p −
73.2176 × pH − 6.2534 × Tur + 1.7585 × TOC − 1.2392 × KMnO4 +

1308.1435 × UV254 + 117.9952 × NH4 + 11.2328 × Mn + 1364.4201 × Al +
1.451 × Fe − 0.0057 × WQI + 584.6712

5. -

WQI_15_day_pred = −3.1871 × Temp − 11.7564 × O2 + 0.7338 × O2p −
101.7279 × pH − 1628 × Tur + 24.9861 × TOC − 245.935 × UV254 +
48.1042 × NH4 + 151.9509 × Mn + 417.6806 × Al + 108.3222 × Fe −

0.1082 × WQI + 918.6201
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The performance of the prediction models is presented in Figures 4–7. Each figure
represents the modelled (predicted) vs. calculated values of the WQI for the given time
period of one, five, ten and fifteen days in advance. Figure 4 indicates very high accuracy
of the first prediction model with a one day time step compared to the calculated data of
the WQI, with a good prediction of the peak values included. Increasing the time step to
five (Figure 5), ten (Figure 6) and fifteen days (Figure 7), the accuracy of the models slowly
decreases, as can also be seen from Figure 3; however, regardless of that, the good prediction
of the peak values remains, and as such, models can be used in prediction purposes.
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Overall, obtained results, i.e., prediction models, are at an acceptable level when
considering the correlation coefficients and the prediction of the peak values. As such, they
can help in optimization of the treatment processes which are dependent on the quality of
raw water in the Butoniga reservoir, and overall, in the sustainability of the DWTP.

5. Discussion

Within this research, simple and yet efficient WQI prediction models were developed
for the Butoniga DWTP using ML tools. The models predict the values of WQI one, five, ten
and fifteen days in advance, given the present observed values of thirteen variables, and
can thus be used as a warning tool and to manage treatment processes of the DWTP which
are dependent on the quality of raw water in the Butoniga reservoir. The WQI method was
used to determine the water quality of influent at the DWTP.

Simple statistical analysis of WQI showed that only 23% of WQI falls under the
“Excellent” water rank according to Table 2; 36% of the WQI falls under the “Good” water
rank, 29% falls under the “Bad” water rank, only 8% under the “Very bad” and 4% under
the “Unfit for drinking” water rank. Generally, it can be said that most of the water (52%;
“Excellent” plus “Good” water rank) is suitable for drinking according to the WQI. As such,
much more attention should be addressed to these samples with “Excellent” and “Good”
water quality because there is no need to worry about the quality of water and these waters
are marginally suitable for drinking and do not need to go through all treatment processes,
while the rest of the samples must go through all treatment processes on the Butoniga
DWTP. Regardless of that, the DWTP provides water that is safe for drinking according to
all examined parameters prescribed by the Croatian regulations [19].

Prediction models for the WQI with a time step of one, five, ten and fifteen days in
advance were built with the use of rule-based models integrated in WEKA modelling
software [23]. Prediction models are interpreted as a set of IF THEN rules, where each
rule is associated with a multivariate linear model. A rule indicates that, whenever a case
satisfies all the conditions, the linear model (equation) is appropriate for predicting the
value of the target attribute, in this case, WQI. In its structure (rules and equations), the
models contain variables (parameters) from Table 3 measured at present to predict WQI
one, five, ten and fifteen days in advance in order to improve the treatment processes of the
DWTP regarding changes in raw water quality in the Butoniga reservoir.

Previous modelling attempts regarding a similar problem was done in [7], where the
effluent water quality of a treatment plant in Turkey, according to WQI and HRA, was
investigated using PCA. Generally, the main conclusion of this study is that the water was
suitable for drinking purposes, and the treatment plant provides excellent stable water
quality; as a result of HRA, parallel with WQI results, it has been found that the risk for
people is “negligible”.
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In other research, such as [7,9–16], various ML algorithms and methods were used,
such as PCA, ANN, NARNET, LSTM, MLP, CNN, RF, NN, MLR, SVM, BTM, RSS, AR, SVR,
LWLR, GNB, SGD, KNN, DT, GBC, BC, SLR and RLR in predicting WQI for various pur-
poses, i.e., efficient and better prediction of WQI [9,11,13], water quality management [10],
health risk assessment and water supply quality for drinking purposes [7], water quality
classification of rivers, lakes, reservoirs [14–16], etc.

As mentioned in the introduction, the main problem with the Butoniga reservoir, and
thus affecting treatment processes on DWTP, appears in the summer months when the
water temperature is the most critical parameter, and water for the treatment process must
be captured from the lowest layer of the reservoir which has increased concentrations of
Mn, Fe, NH4 and lower pH values, and thus has influence on the treatment processes of
the DWTP [18]. To help to manage treatment processes in mentioned situations during the
summer months, the obtained prediction models can be used in the prediction of the WQI,
i.e., the quality of raw water in the Butoniga reservoir, and thus prepare and define water
treatment steps and methods to be used.

Finally, the aim of these models was the prediction of the WQI, and given the accuracy
of the models’ performance on unseen data, they can help in the optimization and man-
agement of treatment processes on the DWTP which are dependent on the quality of raw
water in the Butoniga reservoir, and overall, in the sustainability of the DWTP.

6. Conclusions

In times of increasing demand for potable water, proper optimization and management
of DWTPs is needed, both in terms of obtaining the required water quality, and also in
terms of the adequate treatment processes used and the consumption of the electric energy.
In light of this, in this research, prediction of the WQI was done for the improvement of
specific treatment processes of the Butoniga DWTP.

ML methods in the form of rule-based models were applied on the data measured at
the intake of raw water from the Butoniga reservoir to predict the WQI one, five, ten and
fifteen days in advance. Predictions of the WQI are done according to current values of
measured parameters at the intake of raw water. Obtained models have high correlation
coefficients and provide accurate predictions of the WQI, correctly predicting the peak
values when compared to calculated data of the WQI. As expected, the highest correlation
coefficient was the one day prediction, followed by five and ten days; the lowest correlation
coefficient was with the fifteen-day prediction.

As such, obtained prediction models can help with the optimization and management
of treatment processes of the DWTP, especially during the summer months (tourist season)
when the quality of raw water in the Butoniga reservoir is the worst, and where changes
in the raw water quality can result in direct action and optimization of the operation of
the DWTP. Overall, in this way, obtained models will also help in the sustainability of the
DWTP and will improve the operation of the DWTP, which will result in a better water
quality, thus benefiting overall public safety.

Future work of this research is focused on defining boundaries, i.e., limit values of the
WQI obtained through the prediction models to manage and control specific treatment pro-
cesses of the Butoniga DWTP. For this, an analysis of the output water quality, the treatment
processes included, and the consumed electric energy on the DWTP will be conducted.
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