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Three-point bending is an important test for various parameters in materials science, and the complete test yields a force-
displacement diagram. In this work, we have developed a numerical model that can describe the testing process and help us to 
determine relevant material properties related to the fracture process. The novel numerical model includes a parameter that is 
determined using an inverse analysis, which is described in this paper. The validity of the model is confirmed by comparing the 
measured data and the calculated values. 
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Nomenclature 

Pm experimentally measured force from the force - displacement diagram  
m  experimentally measured displacement from the force - displacement diagram  
 parameter for control of the singularity in the model  
 pseudo-time  
Y0 displacement function describing deflection in the three-point test  
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1. Introduction 

Three-point bending is an important test for various parameters in materials science. The complete test results in a 
force-displacement diagram that covers both the pre-peak and post-peak behaviour of the beam. The pre-peak data 
provides information on the elastic material properties, the determination of which is a routine task. The post-peak 
data provide information about the material properties related to fracture. In this work, we have developed a numerical 
model to describe the testing procedure and to help us determine the relevant material properties related to the fracture 
process. In our previous work, we developed a simple layered model for the correlation between the load (force) and 
the vertical displacement Kožar et al. (2021). In Kožar et al. (2020), we presented stochastic properties of load-
displacement curves resulting from three-point bending tests. Some inverse methods for extraction of material 
parameters are presented in Kožar et al.(2018), Menke(2012) and Čakmak et al (2021). The extension of the analysis 
to fibre-reinforced concrete is presented in Kožar et al. (2019) and Rukavina et al. (2019). The evolution of cracks in 
brittle and quasi-brittle materials and the associated failure is presented in Voznesenskii et al. (2017), Mlikota et al. 
(2021), Gljušćić et al. (2021), Liović et al. (2021), Vukelić et al. (2021), Pastorčić et al. (2019). All calculations are 
performed in Wolfram Mathematica Wolfram Mathematica (2021). 

2. Formulation of the forward problem 

The bending of the three-point specimen can be considered as a beam bending problem up to the point where no 
cracks occur. Thereafter, we assume that the beam shape changes as the crack propagates through the beam. The 
geometry of the problem is shown in Fig.1 
 

 

Fig. 1. Beam model for displacement. 

Our forward model is an extended beam bending model that can be described by the following differential equation 

������ � ����
����� � �    (1) 

with b.c. ��� � �� � � and ���� � 𝐿𝐿 2� � � �. Here 
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   (2) 
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We develop �
����𝑃��� into a series and take the first two members of the series and introduce 𝑃𝑃� � 𝑃𝑃 𝐸𝐸𝐸𝐸�� , 𝑃𝑃� �

𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸��� , etc., we can rewrite the differential equation  

����𝑥𝑥� � 𝑃𝑃� 𝑃�𝑃𝑃𝑃�𝑥𝑥𝑃 � �    (3) 

Solution of this differential equation is  

��𝑥𝑥� � 𝑃 ��� �12𝐿𝐿𝑃𝑃� 𝑃� 𝑃�𝐿𝐿�𝑃𝑃�𝑥𝑥𝑃 � 12𝑃𝑃�𝑥𝑥� 𝑃� �𝑃𝑃�𝑥𝑥��   (4) 

The standard displacement model results from the solution of the beam differential equation and is valid only in 
the elastic range, i.e., up to the peak load. We have performed calculations with three and four series members, but 
this does not significantly change the later results. 

2.1. Beam displacement with singularity 

It should be noted that this solution does not propagate even when ∆EI → 0, and therefore is suitable only for the 
first part of the load before crack initiation. The solution is to introduce a parameter that somehow controls the 
singularity of the solution, and we introduce a  

𝑃𝐸𝐸𝐸𝐸��� 𝑃� 2𝑃𝐸𝐸𝐸𝐸� �1 � �
��    (5) 

Therefore, an additional term was added to the standard solution, as shown in equation (6)  

𝑌𝑌��𝑃𝑃� �� � �
�� �

���
��� �1 �

�
�� �

���
���� 𝑃�𝑃

���
�     (6) 

Now, the solution can become singular for certain values of the parameter κ and is also a function of this parameter. 
We could say that the parameter κ describes the position of the crack depth. When κ = 1, there is no change in the 
elastic solution. The crack depth changes, so κ must also change during the loading process. Changes could be 
introduced if we introduce the 'pseudo-time'  (the pseudo-time is a known parameter in our three-point bending test) 
and κ ≡κ (). 

  

Fig. 2. Influence of the parameter κ(τ) as pseudo-time changes in the interval � � (�, 1�. 

In Fig.2 we have shown the meaning of the parameter κ(τ) and the necessity of an additional singular term. Equation 
(6) is called the 'forward' model and has two parameters, the force 'P' and the fracture parameter κ(τ). Only for the 
correct values of the fracture parameter κ(τ) we obtain the inverse model, which is able to reproduce the data measured 
in the experiment. 
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2.2. Displacement measurement 

The results of a real laboratory experiment are shown in Fig.3. 
 

 

Fig. 3. Measured force - displacement diagram. 

From the above results, it is easy to extract data for the force change in pseudo-time and for the displacement 
change in pseudo-time. After that, it is only necessary to substitute the measured force Pm, δm into equation (6) and 
obtain the (correct) displacements. However, to obtain correct results, one must know the corresponding parameter 
κ(τ). 

3. Model for inverse analysis 

Equation (6) is called a "forward model" because it relates two basic model values, the force "P" and the fracture 
parameter κ(τ), but only for appropriate values of the fracture parameter κ(τ) does the equation reproduce the data 
measured in experiment. We need to formulate an inverse model capable of determining the required parameter. The 
correct values are obtained by solving the following nonlinear equation: )  

𝑌𝑌��𝑃𝑃�, 𝜅𝜅���� � ��    (7) 

where Pm, δm are measured force and displacement (from the three-point experiment), respectively. 
The background of the above process could be explained by assuming the existence of a duality form Marchuk 

(1995), where ��𝑢𝑢∗𝐴𝐴𝑢𝑢� 𝑑𝑑𝑑𝑑𝑑 � 𝑑��𝑢𝑢𝐴𝐴∗𝑢𝑢∗� 𝑑𝑑𝑑𝑑𝑑. For our problem, this gives 𝑌𝑌��𝑃𝑃�, 𝜅𝜅� 𝑑� 𝑑𝑌𝑌��𝑃𝑃�, 𝐾𝐾�𝜏𝜏�� with K(τ) ≡ κ, 
which follows from K(τ) = κ, but first τ is computed as the solution of equation (7). This equation can only be solved 
if we assume K(τ), where the particular form of the function K(τ) is not important. It only needs to be easy to manipulate 
and satisfy the boundary conditions, i.e., be well defined in the interval of interest. 

 

  

Fig. 4. Comparison of the behavior of assumed functions K(τ). 
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We tried two functions: one linear and one exponential. We made the choice based on how well they satisfy the 
boundary conditions imposed by the experiment. Their comparison is shown in Fig.4. 

It can be seen from Fig.4 that the linear assumption would be an oversimplification, since the function values 
exceed the maximum measured displacement δm = 2.5 mm. 

The kappa parameter is calculated from K(τ) = κ and is shown in Fig.5. 
 

  

Fig. 5. Assumed and calculated parameter κ. 

The resulting κ is substituted into the displacement equation (6) and yields displacements corresponding to those 
measured, as shown in Fig.6.  

 

   

Fig. 6. Comparison of the measured and calculated displacements. 

In Fig.6, the blue line represents the measured values of Pm, δm, the green line is the line calculated from equation 
(6) with the parameter κ determined from equation (7), and the orange line is that from equation (6) with the assumed 
parameter κ (as in Fig.5). 

4. Conclusion 

We have presented a method capable of numerically reproducing the force-displacement diagram obtained in three-
point bending tests. The method is based on a beam bending equation extended by a singular term and on an inverse 
analysis to determine the required parameter. 
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