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Čina, thanks for the ”push-pauses” filled with laughter and empathy that

would always charge my batteries when I needed it the most.

Emina, Pablito, Ismar, Tea, Ivan, Emir, Abir, Nam Do, Adela, my dear Ad-

naners, thank you for always helping with the French administration, FEAP,

missing public transportation and all the things that sometimes went wrong.

With such a group of great people, you just cannot fail and you never feel

alone.

My freakish dance girls Kmica, Blanša, Vale, Baabee and Mrva, thanks for
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Abstract

At the core of this thesis is an alternative continuum theory called the micropolar

(Cosserat) continuum theory, developed in order to describe the phenomena which

the classical continuum theory is not able to describe. In this theory, in addition to

the displacement field, there also exists an independent microrotation field and, in

order to completely describe such a material, six material parameters are needed.

In the framework of the finite-element method, new finite elements based on the

micropolar continuum theory in both linear and geometrically non-linear analysis

are developed using the displacement-based approach.

In the linear analysis, both two- and three-dimensional set-ups are analysed. In 2D

new families of triangular and quadrilateral finite elements with linked interpolation

of the kinematic fields are derived. In order to assure convergence of the derived

finite elements, they are modified using the Petrov-Galerkin approximation. Their

performance is compared against existing conventional micropolar finite elements

on a number of micropolar benchmark problems. It is observed that the linked

interpolation shows enhanced accuracy in the bending test when compared against

the conventional Lagrange micropolar finite element.

Next, the weak formulation is extended to 3D and a first-order hexahedral finite

element enhanced with the incompatible modes is derived. The element performance

is assessed by comparing the numerical results against the available analytical so-

lutions for various boundary value problems, which are shown to be significant for

the experimental verification of the micropolar material parameters. It is concluded

that the proposed element is highly suitable for the validation of the methodology

to determine the micropolar material parameters.

In the non-linear part, first- and second-order geometrically nonlinear hexahe-

dral finite elements with Lagrange interpolation are derived. In order to test the

performance of the presented finite elements, a pure-bending non-linear micropo-

lar analytical solution is derived. It is observed that the elements converge to the

derived solution. The elements are tested on three additional examples where the

path-dependence and strain non-invariance phenomena are detected and assessed

in the present context. A procedure to overcome the non-invariance anomaly is

outlined.

Keywords: micropolar theory, microrotation, linked interpolation, incompatible

modes, geometrical nonlinearity, strain invariance



Sažetak

Osnovu doktorske disertacije čini alternativna teorija kontinuuma poznata kao

mikropolarna (Cosseratova) teorija kontinuuma koja je razvijena kako bi opisala

fenomene koje nije moguće opisati klasičnom (Cauchyjevom) teorijom kontinuuma.

U teoriji, osim polja pomaka postoji takoder i nezavisno polje mikrorotacija te kako

bi se u potpunosti opisao takav materijal, potrebno je šest materijalnih parametera.

U okviru metode konačnih elemenata razvijeni su novi konačni elementi temeljeni

na mikropolarnoj teoriji u linearnoj i geometrijski nelinearnoj analizi korǐstenjem

direktne metode temeljene na pomacima.

U linearnoj analizi provedena je dvodimenzionalna i trodimenzionalna analiza.

U 2D razvijena je nova familija trokutnih i četverokutnih elemenata s vezanom

interpolacijom kinematičkih polja. Kako bi se osigurala konvergencija razvijenih

konačnih elemenata, elementi su modificirani Petrov-Galerkinovom aproksimacijom.

Performanse elemenata usporedene su s konvencionalnim mikropolarnim konačnim

elementima na nekoliko referentnih mikropolarnih primjera. Uočeno je da vezana in-

terpolacija pokazuje pobolǰsanu točnost u odnosu na konkvencionalne mikropolarne

konačne elemente.

Nadalje, slaba forma proširena je na 3D analizu i razvijen je šesterostranični 3D

konačni element prvog reda obogaćen nekompatibilnim oblicima. Performanse ele-

menta ocijenjene su usporedujući numeričke rezultate s dostupnim mikropolarnim

referentnim rješenjima za koja je pokazano da su značajna za eksperimentalno

utvrdivanje mikropolarnih parametara. Zaključeno je da je predloženi element izraz-

ito pogodan za numeričku validaciju metodologije odredivanja mikropolarnih param-

etara.

U nelinearnoj analizi razvijeni su geometrijski nelinearni šesterostranični 3D

konačni elementi prvog i drugog reda. Kako bi se testirala valjanost izvedenih

konačnih elemenata, razvijeno je i nelinearno mikropolarno analitičko rješenje za

problem čistog savijanja. Uočeno je da razvijeni elementi konvergiraju ka izvede-

nom analitičkom rješenju. Elementi su takoder testirani na tri dodatna primjera

gdje su uočeni fenomeni ovisnosti putanje ka rješenju te neinvarijantnosti deforma-

cija. Predložen je postupak za eliminaciju anomalije neinvarijantnosti deformacija.

Ključne riječi: mikropolarna teorija, mikrorotacija, vezana interpolacija, nekom-

patibilni oblici, geometrijska nelinearnost, invarijantnost deformacija



Résumé

Au cœur de cette thèse est une théorie de continuum alternatif connue comme la

théorie micropolaire (ou la théorie des Cosserats), qui est développée pour décrire

des phénomènes lesquels on ne peut pas décrire en utilisant la théorie classique.

Dans cette théorie, en complément du champ de déplacement, il existe aussi un autre

champ independant, celui de microrotation, et afin de pouvoir décrire complètement

un tel matériau, six paramètres des matriaux sont nécessaires. Dans le cadre de la

modélisation par éléments finis, nouveaux éléments fondé sur la théorie micropolaire

dans les régimes linéaire et géométriquement non linéaire sont dveloppes en utilisant

l’approche basé au déplacements.

Dans le cadre de l’analyse linéaire, les problèmes bi- et tri-dimensionnels sont

analysés. En 2D, les nouvelles familles des elements triangulaires et quadrilatères

sont développes avec l’interpolation liée des champs cinématiques. Pour assurer la

convergence des éléments finis développés, ils sont modifiés en utilisant l’approximation

de Petrov-Galerkin. Leur performance est comparée avec celle des éléments finis mi-

cropolaires conventionnels dans un nombre des exemples de référence. Il est constaté

que l’interpolation liée améliore la précision dans le cas de flexion, par rapport à la

précision des éléments finis micropolaires conventionnels.

Ensuite, la forme faible est étendue aux trois dimensions, et un élément fini

hexaédrique du premier ordre, avec le champ de déplacement enrichi avec des modes

incompatibles est dérivé. La performance de l’élément est évaluée en faisant la

comparaison des résultats numériques avec les solutions analytiques disponibles pour

les divers problèmes des valeurs limites, lesquels ont une signification conséquente

pour la vérification expérimentale des paramètres micropolaires. Enfin, il est conclu

que l’élément proposé est très bien adaptè pour la validation de la méthodologie afin

de déterminer les paramètres micropolaires.

Dans le part non-linéaire, les éléments de premier et deuxième ordre avec

l’intepolation conventionnelle sont développes. Pour tester la performance des éléments

présentes, une solution analytique non-linéaire de la flexion pure est dérivée. Il est

observé que les éléments convergent vers la solution dérivée. Les éléments sont

testes sur les trois autres exemples où la dépendance du sentier et l’invariance de

deformation sont détectés. Une procedure pour résoudre ces anomalies est présentée.

Mots clés: théorie micropolaire, microrotation, l’interpolation liée, modes incom-

patibles, non-linéarité géométriques, invariance de deformation
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Chapter 1

Introduction

1.1 Motivaton

Most of the materials are heterogeneous in general, with a specific microstructure that

can be represented at a scale particular for the material itself. When this scale is very

small, these materials are usually considered as homogeneous (e.g. metals). In continuum

mechanics, a material is modelled as a continuum which implies that the substance of an

object completely fills the space it occupies. In other words, any microstructure detail is

averaged, leading to a homogeneous continuum theory.

When we analyse a body in the state of rest on which loading is applied, in order to

obtain the equilibrium, internal forces have to occur. The commonly used classical theory

of continuum mechanics developed by Cauchy [3] is based on an ideal model of an elastic,

continuous medium in which the loadings are transmitted through an area element in the

body by means of one vector field called the stress vector. As the volume of the body

tends to zero (which is the main postulate of any continuum theory), the moment of the

stress vector with respect to any point within the volume in Cauchy’s theory also tends to

zero. It means that we cannot apply distributed moments. Consequently, in the classical

theory, the response of the body to applied loading is described by means of two symmet-

ric tensors, the so-called strain tensor and stress tensor. The classical continuum theory

faithfully reproduces numerous experimental results carried out on many construction

materials such as steel and aluminium [4]. However, in many cases remarkable discrep-

ancies between theory and experiments have been observed [4]. When the microstructure

scale becomes significantly large compared to the overall scale, representation based on

the classical theory fails, as shown in experiments on materials with granular, fibrous or

lattice structure [5, 6, 7]. A phenomenon called size-effect is experimentally observed

in rods made of foam subject to torsion and bending, i.e. thin specimens are shown

to be more stiff than thick specimens [5], which cannot be modelled using the classical

continuum theory. In elastic region, the classical theory predicts that the torsional and

1



bending rigidity of circular rods are proportional to the fourth power of the diameter of

the cross-section. Also, it is shown that in states which exhibit high stress gradients such

as the neighbourhood of holes, notches and cracks, the stress concentration factor Kt in

the classical theory is higher than experimentally observed [8]. Furthermore, the stresses

computed in the vicinity of such material discontinuities also do not correspond to the ex-

perimental observations. Additional differences are observed in dynamical problems, e.g.

in case of elastic vibrations characterized by high frequency and small wavelengths (i.e.

ultrasonic waves) [4]. This discrepancy is a result of the fact that for high frequencies and

small wave-lengths the influence of the body microstructure becomes significant, i.e. the

microstructure of materials can develop new types of waves which change the behaviour of

the material. In addition, since the classical continuum theory strictly relies on symmetry

of the stress tensor, it is intrinsically unable to accommodate arbitrary natural boundary

conditions. Due to such anomalies, an alternative continuum model, which should be able

to describe the behavior of such materials accurately is highly needed.

In an attempt to answer to such demands, numerous alternative continuum theories

have been developed, i.e. different approaches are developed to study the multi-scale

nature of the material deformation by taking into account additional effects consistent

with the observed behavior of heterogeneous materials. Within the limits of continuum

mechanics some of them may be developed by introducing higher-order field derivatives in

the strain-tensor definition, such as the so-called couple-stress theory [9] or higher-order

strain-gradient theories [10]. An alternative approach is by introducing additional degrees

of freedom, such as in the so-called micro-stretch or micro-morphic continuum theory [11],

to name only a few. Among the latter class of theories, here we further elaborate upon

the so-called micropolar continuum theory, usually attributed to the Cosserat brothers

[12].

1.2 Micropolar continuum theory

Unlike the classical (Cauchy) continuum theory, in the micropolar continuum theory

the interaction between two particles is described not only by means of the stress vector

field but also an additional vector field which we call the moment-stress vector. Now,

even when the volume of the body tends to zero, we can obtain moment vectors acting

on the body. As a consequence, the stress tensor and an additional couple-stress tensor

acting in the deformed body are obtained, both of which are asymmetric. Furthermore,

in the micropolar continuum theory there exist two independent kinematic fields, the dis-

placement field and the so-called microrotation field, which represents the local rotation

of a point. Due to that, the particle becomes orientable. It is important to note that this

microrotation is completely independent and in general different from the displacement-

induced macrorotation known from the classical continuum theory [12]. Consequently,
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we obtain two strain tensors, the (micropolar) strain tensor and the curvature tensor,

both of which are again asymmetric. If we consider a linear, elastic, homogeneous and

isotropic material it turns out to be described by six independent material constants [4],

in contrast to only two constants present in a linear elastic, homogeneous and isotropic

classical continuum. From a mathematical point of view, an isotropic micropolar material

is a continuum in which rigid particles of infinitesimal size are uniformly distributed in an

elastic matrix and in which homogeneity and isotropy are taken to be the macroproperties

of the medium. The couple stresses physically originate from the bending and twisting

moments transmitted between the rigid particles within the material, while the microrota-

tion field describes their rotation. In terms of a physical picture, a material body may be

envisioned as a collection of a large number of orientable particles that contribute to the

macroscopic behavior of the body [11]. With this approach many new problems can be

modelled, and the obtained results are much closer to the experimental results [4, 13, 8].

The concept of microrotation (as well as the even more general concept of microcontin-

uum) naturally brings length scales into continuum theories. In general microcontinuum

theories, the orientation of material points is set by three local directors. A material

point carrying three deformable directors belongs to the so-called micromorphic contin-

uum and introduces nine extra degrees of freedom (three microrotations, three principal

microstretches and three principal directions) over the classical theory. When the di-

rectors are constrained to have only breathing-type microdeformations, such a particle

belongs to the so-called microstretch continuum, and the extra degrees of freedom are re-

duced to four: three microrotations and one microstretch. In our micropolar continuum,

a point is endowed with three rigid directors only. A material point is then equipped with

the degrees of freedom for rigid rotations only, in addition to the classical translational

degrees of freedom [11].

The response of the body is influenced heavily by the ratio of the characteristic length

λ (associated with the specimen size) to the internal characteristic length l associated

with material structure. When
λ

l
>> 1, the classical theory gives reliable predictions.

However, when
λ

l
≈ 1, the response of constituent subcontinua (deformable and/or ori-

entable particle) becomes important, so that the axiom of locality underlying classical

field theories fails [11].

1.2.1 Historical development of the theory

The micropolar nature of materials (e.g. crystalline solids) was first considered by

Voigt [14] who assumed that the interaction between two parts of the body through an

area element is transmitted not only by the force vector, but also by a moment vector.

After establishing the differential equilibrium equations (including the moment equilib-

rium), Voigt obtained the stress and the couple-stress tensors as asymmetric [4]. Two
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decades later, brothers E. and F. Cosserat [12] extended Voigt’s theory and introduced

the theory of non-symmetric elasticity. They assumed that to each particle a rigid trihe-

dron is attached, which can translate and rotate during the deformation process. In this

way, each material particle had as many as six degrees of freedom: three displacement

components and three rotation components. The theory was originally presented as a

unified theory which brings together mechanics, optics, magnetism and electrodynamics,

but it did not provide the detail on the constitutive equations. The theory had remained

dormant for nearly half a century and was reopened by Günther [15] in 1960s who gave

the fundamentals of the linear Cosserat continuum and discussed in detail the 1D, 2D and

3D models. Six years later, Truesdell [16] and Toupin [17] present their analysis of the so-

called Cosserat pseudocontinuum (nowadays also known as the couple-stress continuum),

where the non-symmetric stress tensor is obtained, but the deformation is determined by

the displacement vector only, using the macrorotation for the rotation field [11]. Further

analysis of the linear Cosserat continuum was given by Schäfer [18], who focused only

on the 2D case. The latest extension of the Cosserat theory was provided by Eringen

[19], who published his theory of microfluids and introduced a new balance law: the law

of conservation of microinertia and suggested the presently used denomination of the

theory as the micropolar theory of elasticity. Other than Cosserat’s or micropolar, this

theory is in the literature also referred to as the asymmetric theory of elasticity [20].

1.2.2 Application of the theory

The micropolar continuum theory is still not widely used in the numerical analysis of

structures. A possible reason may lie in the lack of reliable procedures to determine the

material parameters. Even though there exist numerous works related to micropolar the-

ory (see e.g. [20, 11, 21] among many others), relatively few experimental tests have been

successfully conducted. The first analytical and experimental procedure to determine all

six micropolar material parameters is given by Gauthier and Jahsman in [1], but without

particular success in the experimental part since an opposite trend to the prediction has

been observed. However, by subsequent refinement of Gauthier’s and Jahsman’s proce-

dure, Lakes and his co-workers have given the most significant contribution to devising

experimental procedures to determine the micropolar material parameters in their anal-

ysis of bones [22, 23, 24], polymeric foams [7, 25, 5, 6] and metal foams [26]. A different

approach to determining the micropolar parameters is based on various homogenisation

procedures applied to lattices, granular media, cellular structures and heterogeneus struc-

tures such as masonry structures [27, 28, 29, 30], which provide a more significant source

of the actual values for the micropolar parameters. In contrast to the above experiments

performed by Lakes and his co-workers, which involve specimen preparation on a very

small scale, the idea of homogenisation is to replace a larger-scale composite material or
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assembly of particles by an effective micropolar continuum model. Assuming a homo-

geneous Cosserat material that best approximates a heterogeneous Cauchy material, the

material parameters of the observed specimen may be determined more easily. A com-

prehensive list of related works can be found in [21]. Several recent works of Wheel et al.

[31, 32, 33] have determined the material parameters of highly heterogeneous materials on

a larger-scale by comparing the results of experiments and the finite element simulation.

As mentioned in [34], newer, more comprehensive material models such as composite

material models, are struggling with experimental verification and their corresponding

conceptualisation and interpretation. We are faced with a situation where theory pre-

cedes experiment. Due to the lack of experimental verifications, we believe that the

key to understanding and developing more precise experimental procedures lies in the

comprehensive numerical analysis of the solution to a boundary value problem analysed.

The numerical analysis should broaden the range of solvable problems and open up new

possibilities for the numerical simulation of experimental set-ups. In particular, the de-

velopment of the finite elements of high quality is important for the future progress and

understanding of the micropolar continuum theory.

An early attempt to incorporate micropolar constitutive behaviour into a linear finite

element formulation is presented in [35] with more authors working on numerical solutions

of the micropolar continuum using different finite elements in the linear analysis (e.g.

[36, 37, 38, 39, 40, 41]). In addition to the standard finite element procedures, non-

standard finite element methods, such as the control volume-based finite element method

have also been used to model micropolar finite elements, as presented in [42] and [31].

For the non-linear micropolar continuum, however, the theory is extensively analysed in

[11, 43, 44, 45, 46], but the numerical implementation of the nonlinear finite elements is

not as broadly given. The first attempt to numerically model the nonlinear behaviour

in the geometrical and material framework is presented in [47], where the authors have

analysed micropolar plasticity on one 2D problem. The nonlinear analysis presented by

Ramezani et al. [48] also incorporated both material and geometrical nonlinearity but is

restricted to planar configurations only. The first and only work familiar to us which has

analysed pure micropolar geometrical non-linearity with a finite-element implementation

in 3D is the work of Bauer et al. [49], where mostly linear benchmark problems have been

presented in the nonlinear regime. Other related works which studied the geometrical non-

linearity where based on the theoretical setting of deriving the material strain tensors [45]

and parametrisation of large rotations [44] in the framework of the micropolar theory

but without any finite element implementation. The formulation presented in [49] was

extended to a material nonlinear regime in [50] and [51] where the authors analysed

micropolar hyperelasticity and hyper-elastoplasticity. However, a set of representative

problems to test the micropolar geometrical nonlinearity is still missing.
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In this thesis we wish to contribute to the existing numerical models by introducing

new finite elements in the finite element analysis of the micropolar continuum.

1.3 Thesis overview

Within the framework of this thesis the objectives are separated into two main do-

mains:

(i) linear analysis of the micropolar continuum using the finite element method,

(ii) geometrically non-linear analysis of the micropolar continuum using the finite element

method.

1.3.1 Linear analysis

In Chapter 2 we present the linear micropolar continuum model, where, after prov-

ing the existence of the stress and couple-stress tensors and setting the equilibrium of a

differential volume and surface, we derive the kinematic equations using the geometric

approach. We also define the constitutive equations and relate the derived equations to

the alternative notations present in the literature. Next, in Chapter 3 we first set the finite

element formulation in 2D and develop families of triangular and quadrilateral membrane

finite elements enhanced with the so-called linked interpolation for the displacement field.

After assuring convergence of the presented families of finite elements, their performance

is tested against conventional micropolar finite elements interpolated using only Lagrange

interpolation through two benchmark problems. Next we derive the finite element formu-

lation in 3D and develop the micropolar hexahedral finite element where the conventional

Lagrange displacement interpolation is enhanced with the so-called incompatible modes.

The element performance is tested against the analytical boundary value problems and

compared to the performance of the conventional Lagrange micropolar hexahedral finite

element.

1.3.2 Non-linear analysis

In Chapter 4 we derive the three sets of equations needed to describe a geometrically

non-linear micropolar continuum. At the beginning, a special treatment of spatial rota-

tions is discussed. Next, the kinematic equations are derived with respect to the material

description using Reissner’s approach, while the constitutive equations are kept linear.

In Chapter 5 we define the nonlinear residual force vector, by using the principle of vir-

tual work and setting the first and second order hexahedral interpolation of the virtual

fields. After performing the extensive linearization presented in detail in Appendix G, the

condition that the residual should vanish at equilibrium is reduced to a system of linear

equations which may be solved using the Newton-Raphson iterative method. In Section
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5.2 the numerical analysis of the nonlinear hexahedral finite elements is presented. In

order to test the validity of the derived elements, a pure-bending non-linear analytical

solution is derived and presented in Section 5.2.1. Next we test the finite-element perfor-

mance by comparing the obtained results against the derived analytical solution for the

cantilever beam subject to pure bending. In a number of different 2D and 3D problems

we further test the derived formulation and finite element implementation and detect

the path-dependence and strain non-invariance anomalies. Finally, a brief comment on a

possible solution how to overcome the strain non-invariance anomaly is proposed.
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Chapter 2

Linear micropolar continuum model

In this Chapter the mechanical problem of a linear micropolar continuum is analysed

and the three sets of equations (equilibrium, kinematic and constitutive) needed in order

to describe the problem are derived. All the three sets of equations are presented using

the matrix, tensor and summation-convention notation.

2.1 Existence of stress and couple-stress tensors

Mechanical interactions between parts of a body and between the body and the envi-

ronment are described by forces. The forces are divided into three groups, as follows: (i)

contact forces between particles of the body, (ii) contact forces exerted on the boundary

of the body by its environment and (iii) body forces acting on the interior parts of the

body. In order to define equilibrium equations of an infinitesimal volume and surface, first

we need to prove existence of the stress tensor. The Euler–Cauchy stress principle states

that ”upon any smooth, closed, orientable surface S, be it an imagined surface within the

body or the bounding surface of the body itself, there exists an integrable field of traction

vectors t equipollent to the action exerted by the matter exterior to S and contiguous to it

on that interior to S” [52].

We generalize this principle to a micropolar continuum, in which there exist an addi-

tional integrable field of moment traction vectors m.

Let the body B consisting of material particles X, Y,... deform in the three-dimensional

(3D) Euclidean space E. We identify a generic particle of B by the label X. In the

reference (undeformed) configuration the material particle X ∈ B is given through its

position vector X relative to a point o at time t0. The body deforms and is brought to

a new position which defines the current (deformed) configuration of the body. Load is

applied to the body in terms of a specific body force pv, a specific body moment mv, a

specific surface force ps and a specific surface moment ms. In the deformed placement the

position vector of a material point X ∈ B relative to the same origin o at time t is defined
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by x. A single Cartesian coordinate system with associated vector basis {e1, e2, e3} is used

for both configurations of the body. The reference Cartesian coordinates of a material

point are denoted by (X1, X2, X3) and the current Cartesian coordinates are denoted by

(x1, x2, x3) (see Figure 2.1).

Figure 2.1: Continuous body with applied loading

For each configuration of the body B there exists a scalar field ρ(x, t) defined over B

such that

m(B) =

ˆ
v

ρ(x, t)dv, (2.1)

where dv is the volume element in the current state, m(B) is the mass of the body, inde-

pendent of the configuration of the body and ρ(x, t) is the mass density of the material of

the body dependent on the configuration. Since m(B) is independent of the configuration

we can write ˆ
v

ρ(x, t)dv =

ˆ
V

ρ0(X)dV (2.2)
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for an arbitrary choice of reference configuration, where ρ0(X) is the mass density of B in

the reference configuration and dV is the volume element in the reference configuration

(B0) [53]. Since the mass is conserved during motion we can write

d

dt
(ρ dv) = 0, (2.3)

known as the law of conservation of mass.

To generalise the Cauchy stress principle, we consider an imaginary surface s passing

through an internal material point X dividing the continuous body into two segments (see

Figure 2.2). The part of the body will remain in equilibrium under the assumption that,

instead of the second part of the body, there exists a corresponding system of internal

forces acting on the surface s. It means that on a small surface ∆s only a part of the

internal forces is acting. The resultant of this action on the small surface ∆s are force

and moment vectors ∆F and ∆M.

Figure 2.2: Part of the body with applied loading, internal forces and moments

In order to describe the action of the internal forces, we presume the existence of a

mean stress vector t and a mean couple stress vector m defined as:

t =
∆F

∆s
, m =

∆M

∆s
. (2.4)
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The limiting values, when ∆s → 0, represent the stress vector field t(x, t,n) and the

couple stress vector field m(x, t,n) depending on the position x of the material point,

time t and a unit vector n, defining the outward normal to the chosen surface, as follows:

t = lim
∆s→0

t = lim
∆s→0

∆F

∆s
, (2.5)

m = lim
∆s→0

m = lim
∆s→0

∆M

∆s
. (2.6)

Physically, t(x, t,n) represents the force per unit area exerted on the surface oriented

with n at the position x and time t and m(x, t,n) represents the moment per unit area

exerted on the surface oriented with n at the position x and time t. The question is:

What governs the motion of a small portion of the body surrounded by the small area

∆s and the three areas obtained by cutting the body using three surfaces orthogonal at

their intersection?

In order to answer that question, first we have to postulate the momentum and the

moment of momentum conservation laws, which we use to prove the existence of the stress

and the couple stress tensors.

Definition 1. Momentum balance

The rate of change of a translational momentum of any part of the body is equal to the

vectorial sum of all forces acting on it, i.e.

d

dt

ˆ
v′
ρẋ dv =

ˆ
v′

pv(x, t) dv +

ˆ
s′

t(x, t,n) ds, (2.7)

where v′ represents the current volume of the analysed part of the body and s′ is the

closed surface of that part of the body.

From the law of conservation of mass (2.3) we know that ρ dv is constant, i.e. we obtain

ˆ
v′
ρẍ dv =

ˆ
v′

pv(x, t) dv +

ˆ
s′

t(x, t,n) ds. (2.8)

Let us fix the time and focus on the neighbourhood of a material point X ∈ s (on an

arbitrary diaphragm within the body, through which we draw three curvilinear coordinate

axes, which are orthogonal at X with coordinates ξα along the orthogonal and curved unit

base vectors gα, α = 1, 2, 3. Let us draw a tetrahedron W with one edge of length l and

others in fixed proportions to it. We denote the coordinate faces of the tetrahedron W

by Σα (α = 1, 2, 3) and the principal face by Σ. Let us put a unit normal n pointing

from the origin, a force vector ∆F and a moment vector ∆M on the principal face Σ of

the tetrahedron (see Figure 2.3a). Furthermore, force vectors ∆Fα together with moment
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vectors ∆Mα act on each face Σα (α = 1, 2, 3) of the tetrahedron. The orientation of

the faces Σα are defined by the outward normals nα (see Figure 2.3b (Note: To avoid

cluttering, the force and moment acting on the principal side and the volume forces have

been separated from the forces and moments acting on remaining sides of the tetrahedron

W ).).

(a) Neighbourhood of point X with applied volume load and force and moment vectors on the
principal side of the tetrahedron W

13



(b) Neighbourhood of point X with force and moment vectors on remaining sides of the
tetrahedron W

Figure 2.3: Forces and moments on W

From the conservation of momentum of the tetrahedron W we have

d

dt

ˆ
v

ρẋ dv =

ˆ
v

pv(x, t) dv + tΣ + t1Σ1 + t2Σ2 + t3Σ3, (2.9)

i.e. ˆ
v

ρẍ dv =

ˆ
v

pv(x, t) dv + tΣ + t1Σ1 + t2Σ2 + t3Σ3 (2.10)

and thus

tΣ + t1Σ1 + t2Σ2 + t3Σ3 +

ˆ
v

(pv(x, t)− ρẍ) dv = 0, (2.11)

where v is the volume of the tetrahedron. The volume of the tetrahedron v and the area

of its surface s (s = Σ1 + Σ2 + Σ3 + Σ) are functions of l, i. e. v = v(l3), and s = s(l2). As

the side l goes towards zero, the volume of the tetrahedron approaches zero faster than

the area of its surface, i.e.

lim
l→0

v

s
= 0. (2.12)
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In equation (2.11) we will define a new value p∗v and name it the effective body force:

p∗v = pv − ρẍ. (2.13)

As l → 0 the mean values of the stress vectors become equal to the total value of the

stress vector t. Furthermore, from equations (2.11), (2.12) and (2.13) we conclude that

lim
l→0

´
v
p∗v dv

s
= − lim

l→0

´
Σ

t ds+
´

Σ1
t1 ds+

´
Σ2

t2 ds+
´

Σ3
t3 ds

s
⇒ lim

l→0

´
s
t ds

s
= 0. (2.14)

The mean value theorem for integrals [54] states that every integral can be written

as a product of a certain function value within the area of integration and the area of

integration so that there exists a point Y ∈ Σ and points Yα ∈ Σα such that

1

s

ˆ
s

t ds =
1

s

[
t(xY ,n)(area Σ) +

3∑
α=1

t(xYα ,nα)(area Σα)

]
, (2.15)

where nα is the outward unit normal to Σα at Yα and n is the outward unit normal to Σ

at Y .

As the length l is approaching zero, the tetrahedron collapses into the point X and

the position vectors xY , xYα become equal to x, and the unit normals become equal

to the unit vectors gα but with opposite direction, i.e. nα = −gα. It means that, as

l → 0,
area Σ

s
→ β, where β is a constant, and

area Σα

s
→ nαβ, where n = nαgα.

Equations (2.14) and (2.15) give

t(x,n) +
3∑

α=1

nαt(x,−gα) = 0. (2.16)

Noting that n = nαgα multiplied by gβ gives

n · gβ = nαgα · gβ, (2.17)

and thus

n · gβ = nβ. (2.18)

If we take that n = gβ = δαβgα, where δαβ is the Kronecker symbol defined as

δij =

0 if i 6= j

1 if i = j
, (2.19)

and using equation (D.2) we obtain:
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t(x,gβ) +
3∑

α=1

δαβt(x,−gα) = 0, (2.20)

t(x,gβ) + t(x,−gβ) = 0, (2.21)

t(x,gβ) = −t(x,−gβ). (2.22)

Equation (2.22) is known as Cauchy’s Fundamental Lemma [55]. Using this and going

back to the equation (D.2) we obtain:

t(x,n) +
3∑

α=1

nαt(x,−gα) = 0, (2.23)

t(x,n) =
3∑

α=1

gα · n t(x,−gα) = 0, (2.24)

t(x,n) =
3∑

α=1

t(x,−gα)⊗ gα · n, (2.25)

where ”⊗” is a tensor (or outer) product. The vector field t(x, t,n) is therefore not just

a function of the normal to an imaginary internal diaphragm within the body, it is the

linear function of this normal:

t(x, t,n) = σ(x, t) · n, (2.26)

where

σ(x, t) =
3∑

α=1

t(x,−gα)⊗ gα (2.27)

is the stress tensor. Equation (2.26) is referred to as the Cauchy theorem [55]. The stress

tensor σ is a second order tensor which in the classical continuum theory completely

defines the state of stress at a point in the deformed configuration. The above proof of

existence of such an object due to Cauchy is of fundamental importance for the develop-

ment of all continuum theories. Since in the micropolar continuum theory the interaction

between particles is described by an additional moment couple-stress vector, we may also

prove existence of an additional stress tensor known as the couple-stress tensor as will be

shown next.
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Definition 2. Balance of Angular Momentum.

The rate of change of an angular momentum of any part of the body is equal to the

vectorial sum of all moments acting on it, i.e.

d

dt

ˆ
v′

(x× ρẋ) dv =

ˆ
v′

[x× pv(x, t) + mv(x, t)] dv +

ˆ
s′

[x× t(x, t,n) + m(x, t,n)] ds.

When this balance is applied to the tetrahedron W we have

d

dt

ˆ
v

(x× ρẋ) dv =

ˆ
v

[x× pv(x, t) + mv(x, t)] dv +

ˆ
s

[x× t(x, t,n)] ds+

+ mΣ + m1Σ1 + m2Σ2 + m3Σ3.

(2.28)

Replacing the stress vector t(x, t,n) = σ(x, t) · n and noting that

x× t = x̂ · t, ∀ x ∈ R3, (2.29)

where x̂ is a skew-symmetric vector-product operator given for the present vector base in

the matrix form as

x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (2.30)

we obtain

ˆ
v

(����ẋ× ρẋ + x× ρẍ) dv =

ˆ
v

[x× pv(x, t) + mv(x, t)] dv +

ˆ
s

[x̂ · σ(x, t) · n] ds+

+ mΣ + m1Σ1 + m2Σ2 + m3Σ3.

(2.31)

In order to further manipulate the equation (2.31) we introduce next the so-called

divergence theorem [56].

Theorem 1 (Divergence Theorem, also known as Ostrogradsky-Gauss Theorem:)

The outward flux of a vector field v through a closed surface is equal to the integral over

the volume inside the surface of the divergence of the vector field, i.e.

ˆ

V

div v dV =

˛

S

v · n dS, (2.32)

where V is a considered volume, S is a closed surface around it, v is an arbitrary differ-

entiable vector field, n is an outward normal to S and div v = ∇ · v with ∇ as the nabla

operator.
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The divergence theorem can be generalised to second order tensors as follows

ˆ

V

div A dV =

˛

S

A · n dS, (2.33)

where A is a second order tensor. The proof of this theorem can be found in [54].

Divergence of a tensor is not an uniquely defined operation, i.e. written in a tensor

form it can be understood as ∇ ·A either A · ∇.

Here we define the scalar product (also known as the dot product or inner product) between

a second-order tensor and a vector. Second-order tensor A is defined as

A = Aijei ⊗ ej, (2.34)

where ∇ is defined as

∇ =
∂

∂xp
ep. (2.35)

The first tensor-divergence form, i.e. ∇ ·A is thus equal to

∇ ·A =
∂

∂xp
ep · Aijei ⊗ ej (2.36)

=
∂

∂xp
Aijep · ei ⊗ ej (2.37)

=
∂

∂xp
Aijδpi ⊗ ej (2.38)

=
∂

∂xp
Apjej, (2.39)

and the second form, i.e. A · ∇ is equal to

A · ∇ = Aijei ⊗ ej ·
∂

∂xp
ep

= Aij
∂

∂xp
ei ⊗ ej · ep

= Aij
∂

∂xp
eiδjp

= Aip
∂

∂xp
ei. (2.40)

In this work we choose to use the second form for a tensor-divergence operation, i.e.

div A = A · ∇ but, in order to compare the analytical model and the obtained numerical

results in the linear analysis with numerous literature that uses the alternative convention

[57, 20] div A = ∇ ·A, the linear micropolar analytical model is also derived using the

former tensor-divergence definition and presented in Appendix A.
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Applying the divergence theorem on equation (2.31) gives

ˆ
v

(x× ρẍ) dv =

ˆ
v

[x× pv(x, t) + mv(x, t) + div(x̂ · σ(x, t))] dv+

+ mΣ + m1Σ1 + m2Σ2 + m3Σ3.

(2.41)

We define a new effective body moment p∗m:

p∗m = x× ρẍ− x× pv(x, t)−mv(x, t)− div(x̂ · σ(x, t)). (2.42)

As the side l goes towards zero, the volume of the tetrahedron approaches zero faster than

the area of its surface. Analogously, we can conclude that

lim
l→0

´
v
p∗m dv

s
= lim

l→0

´
Σ

m ds+
´

Σ1
m1 ds+

´
Σ2

m2 ds+
´

Σ3
m3 ds

s
⇒ lim

l→0

´
s
m ds

s
= 0.

(2.43)

According to the mean theorem:

1

s

ˆ
s

m ds =
1

s

[
m(xY ,n)(area Σ) +

3∑
α=1

m(xYα ,nα)(area Σα)

]
. (2.44)

As the length l is approaching zero, the tetrahedron reduces to the point X and the

position vectors xY , xYα become equal to x, and the unit normals become equal to

the unit vectors gα but with opposite direction, i.e. nα = −gα. It means that, as

l → 0,
area Σ

s
→ β, where β is a constant, and

area Σα

s
→ nαβ, where n = nαgα.

Equations (2.43) and (2.44) give

m(x,n) +
3∑

α=1

nαm(x,−gα) = 0. (2.45)

We thus generalise the Cauchy Fundamental Lemma to the couple stress vector as

m(x,gβ) = −m(x,−gβ). (2.46)

Using equations (2.45) and (2.46) we obtain

m(x,n) =
3∑

α=1

gα · n m(x,−gα) = 0, (2.47)

m(x,n) =
3∑

α=1

m(x,−gα)⊗ gα · n. (2.48)

The couple stress vector field m(x, t,n) is therefore also the linear function of the
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normal to an imaginary internal diaphragm within the body:

m(x, t,n) = µ(x, t) · n, (2.49)

where

µ(x, t) =
3∑

α=1

m(x,−gα)⊗ gα, (2.50)

is the couple-stress tensor. Since we have assumed that the interactions between particles

occur by means of a force stress vector t and an additional couple-stress vector m, the

existence of an additional stress tensor is inevitable. The couple-stress tensor is also a

tensor of order two. By proving the existence of both tensors, we have completely defined

the state of stress of a point in the deformed configuration of a micropolar continuum.

In order to shorten and simplify the notation, the dot (”·”) in the definition of the inner

product (between two vectors, two second order tensors and between a second order tensor

and a vector) will be generally omitted in the continuation of this thesis, i.e. A ·b = Ab,

A · B = AB, a · b = aTb and a · B = aTB where a,b represent vectors and A,B rep-

resent second order tensors. Such a notation thus fully conforms with standard matrix

multiplication.
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2.2 Equations of equilibrium

Let us analyse the body in the deformed state under the influence of external actions

consisting of a distributed volume load and a distributed surface load as defined in Section

2.1. In the linear analysis analysed here we assume that the body, when deformed, exhibit

small displacements and small rotations. This assumption leads to the fact that the

difference between the body volume and body surface in the undeformed and deformed

configuration can be neglected. Thus the deformed body volume is referred to as V and

the deformed body surface is referred to as S. The body surface S is divided into two

parts: Sp with prescribed forces and couples and Su with prescribed displacements and

rotations where Su ∪ Sp = S and Su ∩ Sp = ∅. Distributed surface loads ps and ms and

distributed volume loads pv and mv are assumed to act on Sp and in the interior of the

body as shown in Figure 2.4. The base vectors ei, i = 1, 2, 3 are here assumed to be

orthogonal and straight.

Figure 2.4: Body subject to applied volume load and surface traction

2.2.1 Differential equations of equilibrium within the body

Let us analyse the forces acting on the differential volume dV in the deformed con-

figuration as shown in Figure 2.5, where stresses and loadings have been separated for

clarity.
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(a) Components of the force stress (b) Components of the couple-stress

(c) Components of the applied volume load

Figure 2.5: Equilibrium of a differential volume.

Summing all the components of the applied load and internal forces along the co-ordinate

axis x1 and dividing by dV gives:

∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

+ pv1 = 0. (2.51)

Summing all the components of the applied load and internal forces along the co-ordinate

axis x2 and dividing by dV gives:

∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

+ pv2 = 0. (2.52)

Summing all the components of the applied load and internal forces along the co-ordinate

axis x3 and dividing by dV gives:
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∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3

+ pv3 = 0. (2.53)

Written in the matrix form equations (2.51), (2.52) and (2.53) readσ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




∂
∂x1
∂
∂x2
∂
∂x3

+


pv1

pv2

pv3

 =


0

0

0

 , (2.54)

i.e.

σ∇+ pv = 0, (2.55)

where ∇ is the nabla operator defined in the present vector base as

∇ =


∂
∂x1
∂
∂x2
∂
∂x3

 . (2.56)

Defining the divergence of the stress tensor as div σ = σ∇, the tensor form of equations

(2.51),(2.52) and (2.53) is

div σ + pv = 0, (2.57)

and using summation convention, equations (2.51), (2.52) and (2.53) can also be written

as

σij,j + pvi = 0, (2.58)

where the first index in the stress denotes the direction of the stress with respect to the

coordinate base, the second index denotes the direction of the surface normal, comma

denotes differentiation with respect to the spatial coordinates, and i, j = 1, 2, 3.

In order to completely define the equilibrium of the differential volume, we have to

write the moment equilibrium equations around axes x1, x2 and x3. Summing all the

moments around the x1 axis we obtain(
σ31 +

∂σ31

∂x1

dx1

)
(dx2)2

2
dx3 −

(
σ21 +

∂σ21

∂x1

dx1

)
dx2

(dx3)2

2
−
(
σ22 +

∂σ22

∂x2

dx2

)
dx1

(dx3)2

2
+

+

(
σ32 +

∂σ32

∂x2

dx2

)
dx1 dx2 dx3 + σ21 dx2

(dx3)2

2
− σ31

(dx2)2

2
dx3 + σ22 dx1

(dx3)2

2
+

− σ33 dx1
(dx2)2

2
+

(
σ33 +

∂σ33

∂x3

dx3

)
dx1

(dx2)2

2
−
(
σ23 +

∂σ23

∂x3

dx3

)
dx1 dx2 dx3+

+

(
µ11 +

∂µ11

∂x1

dx1

)
dx2 dx3 +

(
µ12 +

∂µ12

∂x2

dx2

)
dx1 dx3 − µ11 dx2 dx3 − µ12 dx1 dx3+

+

(
µ13 +

∂µ13

∂x3

dx3

)
dx1 dx2 − µ13 dx1 dx2 +mv1 dV + pv3

dx2

2
dV − pv2

dx3

2
dV = 0.

(2.59)
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Dividing this result by dV and letting dx2 → 0 and dx3 → 0 we obtain

∂µ11

∂x1

+
∂µ12

∂x2

+
∂µ13

∂x3

+ σ32 − σ23 +mv1 = 0. (2.60)

Summing all the moments around the axes x2 and x3 likewise gives

∂µ21

∂x1

+
∂µ22

∂x2

+
∂µ23

∂x3

+ σ13 − σ31 +mv2 = 0, (2.61)

∂µ31

∂x1

+
∂µ32

∂x2

+
∂µ33

∂x3

+ σ21 − σ12 +mv3 = 0. (2.62)

Written in the matrix form equations (2.60), (2.61) and (2.62) readµ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33




∂
∂x1
∂
∂x2
∂
∂x3

+


σ32 − σ23

−σ31 + σ13

σ21 − σ12

+


mv1

mv2

mv3

 =


0

0

0

 . (2.63)

We will further split our stress tensor σ into its symmetric (σs) and skew-symmetric

(σa) part as follows:σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

 σ11
1
2
(σ12 + σ21) 1

2
(σ13 + σ31)

1
2
(σ21 + σ12) σ22

1
2
(σ23 + σ32)

1
2
(σ31 + σ13) 1

2
(σ32 + σ23) σ33


︸ ︷︷ ︸

=σs

+

+

 0 1
2
(σ12 − σ21) 1

2
(σ13 − σ31)

1
2
(σ21 − σ12) 0 1

2
(σ23 − σ32)

1
2
(σ31 − σ13) 1

2
(σ32 − σ23) 0

 .
︸ ︷︷ ︸

=σa= 1
2
â

(2.64)

As shown in equation (2.29), every skew-symmetric tensor of order two can be written in

a vector form such that for every two vectors v,w ∈ R3

v̂w = v ×w, (2.65)

where v̂ is a skew-symmetric tensor and v̂ is its axial vector [53]. In this way we obtain

an axial vector a of the double skew-symmetric part of the stress tensor as

a = axial(2σa) =


σ32 − σ23

−σ31 + σ13

σ21 − σ12

 . (2.66)

Now we can write equation (2.63) in a matrix form as
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µ∇+ a + mv = 0. (2.67)

The tensor form of this equation is

div µ+ grad x̂ : σ + mv = 0. (2.68)

The second term of equation (2.68) represents a double inner product (or double contrac-

tion) between a third-order tensor and a second-order tensor. Using summation conven-

tion and setting any two indices equal (i.e. one pair of indices), tensors are said to be

contracted and the order of the tensor is reduced by two [53]. It is not an uniquely defined

operation, since any of the indices can be set as equal. Here we have a double contraction

and, in order to obtain a from grad x̂ and σ, we have to define which two pairs of indices

we have to set as equal. First we will define

grad x̂ = −εijkxiej ⊗ ek ⊗∇, (2.69)

where εijk is the permutation tensor or Levi-Civita symbol defined as

εijk =


1 if (i, j, k) is a cyclic permutation of (1, 2, 3),

−1 if (i, j, k) is an anticyclic permutation of (1, 2, 3),

0 otherwise,

(2.70)

and ∇ =
∂

∂xp
ep. Furthermore, σ is a second-order tensor, i.e.

σ = σmnem ⊗ en. (2.71)

From equation (2.69) we obtain:

grad x̂ = −εijk
∂xi
∂xp

ej ⊗ ek ⊗ ep,

= −εijkδipej ⊗ ek ⊗ ep,

= −εijkej ⊗ ek ⊗ ei,

= −εijkei ⊗ ej ⊗ ek. (2.72)

The double contraction between the third-order tensor grad x̂ and the second-order tensor

σ

grad x̂ : σ = (−εijkei ⊗ ej ⊗ ek) : (σmnem ⊗ en) (2.73)

is now defined such that the dot products apply to the adjacent set of the base vectors
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(here the last pair) i.e.

grad x̂ : σ = −εijkσmnei
(
eT
j em

) (
eT
k en
)

= −εijkσmneiδjmδkn
= −εijkσjkei. (2.74)

A detailed analysis of the equality a = grad x̂ : σ is given in Appendix B.

As a result, using summation indices, equations (2.60), (2.61) and (2.62) can be written

as follows:

µij,j − εijkσjk +mvi = 0, (2.75)

where the first index in the couple-stress tensor denotes the direction of the axis of the

couple stress with respect to the coordinate base and the second index denotes the direc-

tion of the surface normal. We can see that the stress tensor is generally not symmetric.

The skew-symmetric part of the stress tensor is determined by the body couples and the

divergence of the couple-stress tensor. When µij = 0, mvi = 0 the stress tensor will be

symmetric, which is the case of the classical continuum theory.

As already mentioned, in the development of the micropolar theory, two different

conventions for representing the equilibrium equations exist. The more commonly used

one is attributed to Eringen [57, 11] in which authors use alternative forms of the Cauchy

theorem, i.e.

t(x, t,n) = nTσ(x, t), (2.76)

m(x, t,n) = nTµ(x, t), (2.77)

and the alternative definition of divergence of the second-order tensor, i.e. div σ = ∇Tσ.

As a result, the meaning of the indices in the stress and stress couple tensors (there

denoted as tij and mij) is actually reversed – the first index denotes the direction of the

surface normal, while the second index denotes the direction of the stress or axis of the

couple-stress component with respect to the coordinate base (effectively meaning tij = σji

and mij = µji). The convention we follow (see e.g. [58], p. 140) is motivated by its wide-

spread use in modern classical theory of elasticity. However, for comparison with the

present literature, in Appendix A.1 equilibrium of the same differential volume is written

using the alternative notation.

2.2.2 Equations of equilibrium on surface

In order to fully define the boundary conditions on Sp, we need to relate the applied

surface loads ps and ms to the inside of Sp which resist the action of ps and ms and keep

the surface in equilibrium. To do that, we analyse equilibrium of a differential element
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under the differential surface dS with a unit normal n as shown in Figure 2.6, where

stresses and loadings are separated for clarity.

(a) Components of the force stress and the
applied surface load

(b) Components of the moment stress and the
applied volume load

Figure 2.6: Equilibrium of a differential surface element.

Summing all the forces in the directions x1, x2 and x3 we obtain:

σ11 dS1 + σ12 dS2 + σ13 dS3 = ps1 dS + pv1 dV, (2.78)

σ21 dS1 + σ22 dS2 + σ23 dS3 = ps2 dS + pv2 dV, (2.79)

σ31 dS1 + σ32 dS2 + σ33 dS3 = ps3 dS + pv3 dV. (2.80)

Taking into account that here
dV

dS
is a higher-order differential (which can be neglected)

and

dSi = dSni, ni = cos(n, ei), i = 1, 2, 3, (2.81)

where n is the unit normal to the surface element dS, equations (2.78)-(2.80) may be

written in the matrix form to obtain the following:σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



n1

n2

n3

 =


ps1

ps2

ps3

 , (2.82)

i.e.

σn = ps. (2.83)

The previous equation can be written in the component form as
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σijnj = psi, i, j = 1, 2, 3. (2.84)

Summing all the moments around x1, x2 and x3 and neglecting the contribution of the

stresses, distributed forces and volume loads which involve differentials of a higher order,

we obtain

µ11 dS1 + µ12 dS2 + µ13 dS3 = ms1 dS, (2.85)

µ21 dS1 + µ22 dS2 + µ23 dS3 = ms2 dS, (2.86)

µ31 dS1 + µ32 dS2 + µ33 dS3 = ms3 dS, (2.87)

or, in the matrix form: µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33



n1

n2

n3

 =


ms1

ms2

ms3

 , (2.88)

i.e.

µn = ms. (2.89)

The component form of this equation is

µijnj = msi, i, j = 1, 2, 3. (2.90)

Equations (2.84) and (2.90) give the natural (also known as the static, load or Neu-

mann) boundary condition. In contrast, the boundary conditions on Su are called essential

(also known as the kinematic or Dirichlet) boundary conditions. Since the equilibrium

equation is here a differential equation the associated essential boundary condition on Su,

as well as the natural boundary condition on Sp are considered to be the fundamental

parts of the group of equilibrium equations. Again, in Appendix A.2 the same differential

surface is analysed but using the alternative definition of the stress indices.

2.3 Kinematic equations - geometric approach in lin-

ear analysis

The second group of equations we need to provide in order to fully define the problem

are the kinematic equations, which relate the strains to the displacements. In this section

we will limit our attention only to linear analysis and derive the kinematic equations by
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analysing geometry of the deformation process. A two-dimensional solid in the state of

planar strain is shown in Figure 2.7.

Figure 2.7: Kinematics

The difference between the deformed and the initial position is called the displacement

and is denoted by u. The components of displacement are denoted by u1, u2, u3, all

functions of x1, x2, x3. In relation to the classical continuum theory, in the micropolar

continuum theory we have an additional kinematic field ϕ(x1, x2, x3) known as the micro-

rotation field which represents the local rotation of the point with coordinates x1, x2, x3

and is completely independent of the displacement field. For the planar situation shown in

Figure 2.7 both u and ϕ depend only on x1 and x2, where also u3 = 0 and ϕ1 = ϕ2 = 0.

In the classical continuum theory, the deformed configuration will not involve the micro-

rotation, i.e. the elements of the deformation process drawn in Figure 2.7 as red and blue

will not exist. Any rotation left in the deformation process will in this case be completely

defined by the change of the displacement field in space - the macrorotation.

In the classical continuum theory, the displacement gradient grad u = u⊗∇ (for a 3D

body) is decomposed into a symmetric part ε and a skew-symmetric part Ω, as follows:

grad u = ε+ Ω, (2.91)
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i.e.


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3


︸ ︷︷ ︸

grad u

=


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
∂u3
∂x3


︸ ︷︷ ︸

ε

+

+


0 −1

2

(
∂u2
∂x1
− ∂u1

∂x2

)
1
2

(
∂u1
∂x3
− ∂u3

∂x1

)
1
2

(
∂u2
∂x1
− ∂u1

∂x2

)
0 −1

2

(
∂u3
∂x2
− ∂u2

∂x3

)
−1

2

(
∂u1
∂x3
− ∂u3

∂x1

)
1
2

(
∂u3
∂x2
− ∂u2

∂x3

)
0


︸ ︷︷ ︸

Ω

,

(2.92)

where ε is called the strain tensor and Ω represents the rigid body rotation, also known

as the spin or the macrorotation tensor [3]. The components of the vector Ωv are equal

to the components of the vector product ω×v, where v is an arbitrary vector v ∈ R3 [3].

Hence Ω = ω̂ and ω = 1
2
∇× u, where the macrorotation vector ω is

ω =


1
2

(
∂u3
∂x2
− ∂u2

∂x3

)
1
2

(
∂u1
∂x3
− ∂u3

∂x1

)
1
2

(
∂u2
∂x1
− ∂u1

∂x2

)
 =


ω1

ω2

ω3

 . (2.93)

It is important to note that the microrotation ϕ is completely independent and different

from the rotational part Ω of the displacement gradient, i.e. from the macrorotation ω.

Considering planar deformation shown in Figure 2.7, coordinates of the pointsA,B,C,D

in the undeformed position are:

A = (x1, x2),

B = (x1 + ∆x1, x2),

C = (x1, x2 + ∆x2),

D = (x1 + ∆x1, x2 + ∆x2).

As a result of external actions the body deforms and is brought to a new position. Coor-

dinates of these points in the deformed position are:

A′ = (x1 + u1(x1, x2), x2 + u2(x1, x2)) ,

B′ = (x1 + ∆x1 + u1(x1 + ∆x1, x2), x2 + u2(x1 + ∆x1, x2)),

C ′ = (x1 + u1(x1, x2 + ∆x2), x2 + ∆x2 + u2(x1, x2 + ∆x2)),

D′ = (x1 + ∆x1 + u1(x1 + ∆x1, x2 + ∆x2), x2 + ∆x2 + u2(x1 + ∆x1, x2 + ∆x2)).
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The normal strains of the linear micropolar continuum ε11 and ε22 are defined as the change

in length of a material fibre per initial length when the initial length tends to zero. We are

analysing the body on a differential level, i.e. when ∆x1 = dx1 and ∆x2 = dx2 and expand

u1(x1 + dx1, x2), u1(x1, x2 + dx2), u1(x1 + dx1, x2 + dx2), u2(x1 + dx1, x2), u2(x1, x2 +

dx2), u2(x1 + dx1, x2 + dx2) in Taylor series. The oriented length
−−→
A′B′ then follows as

−−→
A′B′ = (x1B′ − x1A′) e1 + (x2B′ − x2A′) e2 (2.94)

=

(
dx1 +

∂u1

∂x1

dx1

)
e1 +

(
∂u2

∂x1

dx1

)
e2, (2.95)

where all the higher-order terms in dx1 (i.e. dx2
1, dx3

1, ...) vanish in comparison to the

terms with dx1. The normal strain ε11 is equal to

ε11 =
‖
−−→
A′B′‖ − dx1

dx1

(2.96)

=
1

dx1

dx1

√(1 +
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

− 1

 (2.97)

=

√(1 +
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

− 1

 . (2.98)

We will expand the function ε11 = f
(
∂u1
∂x1
, ∂u2
∂x1

)
into Taylor series around ∂u1

∂x1
= 0, ∂u2

∂x1
= 0

(the undeformed state) as follows

ε11 =

√(1 +
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

− 1

∣∣∣∣∣∣
(0,0)

+
2
(

1 + ∂u1
∂x1

)
2

√(
1 + ∂u1

∂x1

)2

+
(
∂u2
∂x1

)2

∣∣∣∣∣∣∣∣
(0,0)

∂u1

∂x1

+

+
2
(
∂u2
∂x1

)
2

√(
1 + ∂u1

∂x1

)2

+
(
∂u2
∂x1

)2

∣∣∣∣∣∣∣∣
(0,0)

∂u2

∂x1

+O

((
∂u1

∂x1

)2

,
∂u1

∂x1

∂u2

∂x1

,

(
∂u2

∂x1

)2
)
. (2.99)

After neglecting the non-linear terms in u1 and u2 we obtain

ε11 =
∂u1

∂x1

= ε11, (2.100)

where ε11 is the normal strain in the classical continuum theory (see equation (2.92)).

Analogously, we compute
−−→
A′C ′ as

−−→
A′C ′ = (x1C′ − x1A′) e1 + (x2C′ − x2A′) e2 (2.101)
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=

(
∂u1

∂x2

dx2

)
e1 +

(
dx2 +

∂u2

∂x2

dx2

)
e2, (2.102)

where again all the higher-order terms in dx2 (i.e. dx2
2, dx3

2, ...) vanish in comparison to

the terms with dx2. The normal strain ε22 is thus equal to

ε22 =
‖
−−→
A′C ′‖ − dx2

dx2

(2.103)

=
1

dx2

dx2

√(∂u1

∂x2

)2

+

(
1 +

∂u2

∂x2

)2

− 1

 . (2.104)

After expanding the result into Taylor series as before and neglecting the non-linear terms

in u1 and u2 we obtain

ε22 =
∂u2

∂x2

= ε22, (2.105)

where ε22 is the normal strain in the classical continuum theory as given in equation

(2.92). It should be noted that the same result for ε11 and ε22 would be obtained if we

considered deformation of the sides CD and BD rather than AB and AC. Analogously, in

3D we would obtain

ε33 =
∂u3

∂x3

= ε33, (2.106)

where ε33 is the normal strain in the classical continuum theory as given in equation

(2.92).

We can see that the normal strains in the micropolar continuum theory are equal

to those in the classical continuum theory, which means that the microrotation ϕ does

not contribute to stretching or shortening of the generic fibre. The influence of the mi-

crorotation will become present in shear strains ε12 and ε21. In contrast to the classical

continuum theory, where the tensor shear strain ε12 is defined as half of the change in

the right angle α + β (the engineering shear strain; see Figure (2.7)) initially formed by

the sides parallel to x1 and x2 [3], in the micropolar continuum theory the shear strain

components (ε12 and ε21) are defined in a different manner. A micropolar shear strain is

defined to be equal to the difference of the change of inclination of a generic fibre during

deformation and the microrotation ϕ.

The shear strain ε21 is thus equal to the difference between the angle α (see Figure

2.7) and the microrotation ϕ3(x1, x2) in the plane x1, x2, around axis x3, i.e.

ε12 = α− ϕ3. (2.107)

The angle α is computed from:
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tanα =
x′2
x′1
, (2.108)

where

x′2 = x2B′ − x2A′

= x2 + u2(x1 + ∆x1, x2)− x2 − u2(x1, x2).

and

x′1 = x1B′ − x1A′

= x1 + ∆x1 + u1(x1 + ∆x1, x2)− x1 − u1(x1, x2).

It means that

tanα =
u2(x1 + ∆x1, x2)− u2(x1, x2)

∆x1 + u1(x1 + ∆x1, x2)− u1(x1, x2)
, (2.109)

α = arctan
u2(x1 + ∆x1, x2)− u2(x1, x2)

∆x1 + u1(x1 + ∆x1, x2)− u1(x1, x2)
. (2.110)

We expand functions u1 and u2 into Taylor series and obtain

α = arctan
u2(x1, x2) +

∂u2

∂x1

∆x1 +O(∆x2
1)− u2(x1, x2)

∆x1 + u1(x1, x2) +
∂u1

∂x1

∆x1 +O(∆x2
1)− u1(x1, x2)

= arctan

∂u2

∂x1

∆x1 +O(∆x2
1)

∆x1 +
∂u1

∂x1

∆x1 +O(∆x2
1)

= arctan

∂u2

∂x1

+O(∆x1)

1 +
∂u1

∂x1

+O(∆x1)

When ∆x1 → 0 :

α = arctan

∂u2

∂x1

1 +
∂u1

∂x1

. (2.111)
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We will expand the obtained function α into Taylor series:

α = arctan
∂u2
∂x1

1 + ∂u1
∂x1

∣∣∣∣∣
(0,0)

+
1

1 +

(
∂u2
∂x1

1+
∂u1
∂x1

)2

(
1 + ∂u1

∂x1

)
· 0− ∂u2

∂x1
· 1(

1 + ∂u1
∂x1

)2

∣∣∣∣∣∣∣
(0,0)

∂u1

∂x1

+

+
1

1 +

(
∂u2
∂x1

1+
∂u1
∂x1

)2

(
1 + ∂u1

∂x1

)
· 1− ∂u2

∂x1
· 0(

1 + ∂u1
∂x1

)2

∣∣∣∣∣∣∣
(0,0)

∂u2

∂x1

+O

((
∂u1

∂x1

)2

,
∂u1

∂x1

∂u2

∂x1

,

(
∂u2

∂x1

)2
)
.

After neglecting non-linear terms in u1 and u2 we finally obtain

α =
∂u2

∂x1

, (2.112)

which means that the shear strain ε21 is equal to

ε21 =
∂u2

∂x1

− ϕ3. (2.113)

Analogously, we define the shear strain ε12 as follows:

ε12 = β + ϕ3. (2.114)

The angle β is computed from (see Figure 2.7):

tan β =
x′′1
x′′2
, (2.115)

where

x′′1 = x1C′ − x1A′

= x1 + u1(x1, x2 + ∆x2)− x1 − u1(x1, x2)

and

x′′2 = x2C′ − x2A′

= x2 + ∆x2 + u2(x1, x2 + ∆x2)− x2 − u2(x1, x2).

It means that

tan β =
u1(x1, x2 + ∆x2)− u1(x1, x2)

∆x2 + u2(x1, x2 + ∆x2)− u2(x1, x2)
, (2.116)
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β = arctan
u1(x1, x2 + ∆x2)− u1(x1, x2)

∆x2 + u2(x1, x2 + ∆x2)− u2(x1, x2)
. (2.117)

After expanding the result into Taylor series as before and when ∆x2 → 0 we obtain

β = arctan
∂u1
∂x2

1 + ∂u2
∂x2

. (2.118)

We expand the obtained function β into Taylor series and neglect the non-linear terms in

u1 and u2 and obtain

β =
∂u1

∂x2

, (2.119)

which means that the shear strain ε21 is equal to

ε12 =
∂u1

∂x2

+ ϕ3. (2.120)

The strain tensor with its components for a planar state of strain is therefore equal to[
ε11 ε12

ε21 ε22

]
=

[
∂u1
∂x1

∂u1
∂x2

+ ϕ3

∂u2
∂x1
− ϕ3

∂u2
∂x2

]
, (2.121)

which can be generalised on a 3D continuum as follows:ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


∂u1
∂x1

∂u1
∂x2

+ ϕ3
∂u1
∂x3
− ϕ2

∂u2
∂x1
− ϕ3

∂u2
∂x2

∂u2
∂x3

+ ϕ1

∂u3
∂x1

+ ϕ2
∂u3
∂x2
− ϕ1

∂u3
∂x3

 . (2.122)

The component form of the micropolar strain tensor is thus equal to

εij = ui,j + εijkϕk. (2.123)

Since we have an additional kinematic field ϕ(x1, x2, x3), we should also define a

corresponding angular strain (referred to as curvature) of an arbitrary fibre element

dxi, i = 1, 2, 3. The curvature effect is a result of the existence of couple-stresses proved in

Section 2.1. For the planar deformation shown in Figure 2.7 curvature κ31 is defined as a

change of rotation ϕ3, which is a function of coordinates (x1, x2), along axis x1. The first

index denotes the axis around which the rotation is taking place and the second index

denotes the direction of change of the rotation, i.e.

κ31 = lim
∆x1→0

ϕ3(x1 + ∆x1, x2)− ϕ3(x1, x2)

∆x1

=
∂ϕ3(x1, x2)

∂x1

. (2.124)

The same result is obtained by observing the change of function ϕ3(x1, x2) between points
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C ′ and D′, i.e.

κ31 = lim
∆x1→0

ϕ3(x1 + ∆x1, x2 + ∆x2)− ϕ3(x1, x2 + ∆x2)

∆x1

=
∂ϕ3(x1, x2 + ∆x2)

∂x1

(2.125)

When ∆x2 → 0, therefore

κ31 =
∂ϕ3(x1, x2)

∂x1

. (2.126)

Curvature in the direction x2 is obtained analogously, i.e.

κ32 = lim
∆x2→0

ϕ3(x1, x2 + ∆x2)− ϕ3(x1, x2)

∆x2

=
∂ϕ3(x1, x2)

∂x2

. (2.127)

The same result is obtained by observing the change of function ϕ3(x1, x2) between points

B′ and D′, i.e.

κ32 = lim
∆x2→0

ϕ3(x1 + ∆x1, x2 + ∆x2)− ϕ3(x1 + ∆x1, x2)

∆x2

=
∂ϕ3(x1 + ∆x1, x2)

∂x2

(2.128)

When ∆x1 → 0, therefore

κ32 =
∂ϕ3(x1, x2)

∂x2

. (2.129)

For two dimensional solids the curvature vector κ3 is equal to

κ3 =

{
∂ϕ3

∂x1
∂ϕ3

∂x2

}
= grad ϕ3 (2.130)

Likewise, for the other two coordinate planes we would obtain

κ1 =

{
∂ϕ1

∂x2
∂ϕ1

∂x3

}
= grad ϕ1 and κ2 =

{
∂ϕ2

∂x1
∂ϕ2

∂x3

}
= grad ϕ2 (2.131)

which enables us to define a curvature tensor in the 3D case asκ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

 =


∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ1

∂x3
∂ϕ2

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3
∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3

 = grad ϕ = ϕ⊗∇. (2.132)

The diagonal terms in κ, which do not exist in κ1,κ2 and κ3 obtained from individual

planar cases are in fact the torsional strains (axial curvatures) which are a genuine 3D

phenomenon. The component form of the curvature tensor is thus equal to

κij = ϕi,j. (2.133)

We note that the so-called couple-stress theory (see [59]) is a special case of the mi-

36



cropolar continuum theory where the microrotation vector ϕ is equal to the macrorotation

vector ω. When ϕ = ω is introduced into the micropolar strain tensor we obtain:

ε12 =
∂u1

∂x2

+ ϕ3 (2.134)

=
1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
︸ ︷︷ ︸

=ε12

+
1

2

(
∂u1

∂x2

− ∂u2

∂x1

)
︸ ︷︷ ︸

=−Ω12=ω3

+ϕ3 (2.135)

= ε12 + ω3 + ϕ3 (2.136)

= ε12. (2.137)

Analogously,

ε21 =
∂u2

∂x1

− ϕ3 (2.138)

=
1

2

(
∂u2

∂x1

+
∂u1

∂x2

)
︸ ︷︷ ︸

=ε21

+
1

2

(
∂u2

∂x1

− ∂u1

∂x2

)
︸ ︷︷ ︸

=−Ω21=−ω3

−ϕ3 (2.139)

= ε21 − ω3 − ϕ3 (2.140)

= ε21. (2.141)

In the couple-stress theory, the curvature tensor thus involves second derivatives of the dis-

placement field. When these derivatives are neglected, the curvature tensor also vanishes

and the couple-stress theory reduces to the classical continuum theory.

2.4 Constitutive equations

Constitutive equations of elastic materials are equations which relate stresses to strains

in the structure, i.e. they describe the macroscopic behaviour resulting from the internal

constitution of the material. We are analysing a continuous, homogeneous and isotropic

material. In a general ideal elastic body we say that stress depends upon strain or defor-

mation from a certain natural state, i.e.

Stress Tensor = f(Strain Tensor). (2.142)

The functional relationship between the two tensors in equation (2.142) must express a

one-to-one relationship between stress and strain (it means, for example, that the strain

has to vanish whenever the stress does) and it may be nonlinear. In the scope of this work

we refer only to the linear theory of elasticity for isotropic materials. For the classical

continuum theory this means that the stress tensor σ is assumed to depend linearly on
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the strain tensor ε. The most general relationship between two second-order tensors σ

and ε is via a fourth-order tensor know as the constitutive tensor or the modulus tensor

T. It can be written as

σ = T : ε (2.143)

or, in the component form relative to an orthogonal vector base,

σij = Tijpqεpq, where i, j, p, q = 1, 2, 3. (2.144)

The property of material isotropy is a very important condition which we use while

setting the constitutive equations, so we will define it.

Definition 3. Material isotropy.

A material is isotropic with respect to certain properties if these properties are the same

in all directions [3]. In particular, this means that if a strain tensor ε results in the stress

tensor σ, then a rotated strain tensor QεQT , where Q ∈ SO(3) is an arbitrary orthogonal

tensor (i.e. QQT = I and det Q = +1), must result in the rotated stress tensor QσQT .

This then implies that the components of the constitutive tensor T remain unaffected by

the orthogonal transformation (Tklmn = QkiQljQmpQnqTijpq), i.e. T must be an isotopic

tensor.

The most general fourth-order isotropic tensor Tijpq has rectangular Cartesian compo-

nents of the following form:

Tijpq = λδijδpq + µ(δipδjq + δiqδjp) + ν(δipδjq − δiqδjp), (2.145)

where λ, µ, and ν represent the material parameters (or material constants) and have the

same value in all coordinate systems and δij is the Kronecker symbol. The proof is given

in [60]. The first two terms in equation (2.145) are symmetric with respect to the first and

second or third and fourth indices and the third term is antisymmetric with respect to

them. In the classical continuum theory we have only one stress tensor σ and one strain

tensor ε, both of which are symmetric. This requires the symmetry of the constitutive

tensor with respect to the first and second or third and fourth indices. As a result, the

third term of the general form of the fourth-order isotropic tensor in (2.145) vanishes and

we obtain only two independent elastic parameters of the material model, µ and λ, known

as Lamè e’s constants.

In the micropolar continuum theory we have two independent stress tensors σ and µ

related to two independent strain tensors ε and κ. Both pairs of stress and strain tensors

38



are in general non-symmetric. Thus, we have to obtain two fourth-order isotropic tensors

T and D such that

σij = Tijpqεpq, (2.146)

µij = Dijpqκpq. (2.147)

Since the stress and strain tensors are non-symmetric, the two constitutive tensors now

have to have all three independent material parameters each, in contrast to the classical

theory of elasticity. Furthermore, we have two independent constitutive equations (2.146)

and (2.147) which means that we will obtain six independent material constants in total.

The component form of the two constitutive tensors is thus equal to

Tijpq = λδijδpq + µ(δipδjq + δiqδjp) + ν(δipδjq − δiqδjp), (2.148)

Dijpq = αδijδpq + β(δipδjq + δiqδjp) + γ(δipδjq − δiqδjp), (2.149)

where λ, µ, ν, α, β and γ, are the independent material elastic constants of a micropolar

material. Using equations (2.146) and (2.148) we obtain the first set of nine equations as

follows:

σ11 = (λ+ 2µ)ε11 + λε22 + λε33, (2.150)

σ12 = (µ+ ν)ε12 + (µ− ν)ε21, (2.151)

σ13 = (µ+ ν)ε13 + (µ− ν)ε31, (2.152)

σ21 = (µ− ν)ε12 + (µ+ ν)ε21, (2.153)

σ22 = λε11 + (λ+ 2µ)ε22 + λε33, (2.154)

σ23 = (µ+ ν)ε23 + (µ− ν)ε32, (2.155)

σ31 = (µ− ν)ε13 + (µ+ ν)ε31, (2.156)

σ32 = (µ− ν)ε23 + (µ+ ν)ε32, (2.157)

σ33 = λε11 + λε22 + (λ+ 2µ)ε33, (2.158)

or simply

σij = λεppδij + (µ+ ν)εij + (µ− ν)εji, (2.159)

where λ and µ are the Lamé constants, ν is another material constant and δij is the

Kronecker symbol. The set of nine equations can also be written in a tensor form, i.e.

σ = T : ε, (2.160)

where

T = λ I⊗ I + (µ+ ν)I + (µ− ν)IT. (2.161)
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In equation (2.161) I represents a second order identity tensor and I represents a fourth

order identity tensor. The double contraction product between two second order identity

tensors gives a fourth order tensor which may be presented in a matrix form as

I⊗ I =



1 0 0

0 1 0

0 0 1


0 0 0

0 0 0

0 0 0


0 0 0

0 0 0

0 0 0


0 0 0

0 0 0

0 0 0


1 0 0

0 1 0

0 0 1


0 0 0

0 0 0

0 0 0


0 0 0

0 0 0

0 0 0


0 0 0

0 0 0

0 0 0


1 0 0

0 1 0

0 0 1





, (2.162)

or in component notation as

I⊗ I = δijδklei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ei ⊗ ek ⊗ ek = ei ⊗ ei ⊗ ej ⊗ ej. (2.163)

The 4th order identity tensor I may be presented in a matrix form as

I =



1 0 0

0 0 0

0 0 0


0 1 0

0 0 0

0 0 0


0 0 1

0 0 0

0 0 0


0 0 0

1 0 0

0 0 0


0 0 0

0 1 0

0 0 0


0 0 0

0 0 1

0 0 0


0 0 0

0 0 0

1 0 0


0 0 0

0 0 0

0 1 0


0 0 0

0 0 0

0 0 1





(2.164)

or in component notation as

I = Iijklei ⊗ ej ⊗ ek ⊗ el = δikδjlei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej ⊗ ei ⊗ ej, (2.165)

which gives I : A = A, where A is an arbitrary second order tensor [61]. Transpose of a

4th order identity tensor I is defined by swapping the second and the fourth index, i.e.
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in a matrix form as

IT =



1 0 0

0 0 0

0 0 0


0 0 0

1 0 0

0 0 0


0 0 0

0 0 0

1 0 0


0 1 0

0 0 0

0 0 0


0 0 0

0 1 0

0 0 0


0 0 0

0 0 0

0 1 0


0 0 1

0 0 0

0 0 0


0 0 0

0 0 1

0 0 0


0 0 0

0 0 0

0 0 1





(2.166)

or in component notation as

IT = δilδjkei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej ⊗ ej ⊗ ei, (2.167)

which gives IT : A = AT [61].

By performing the double contraction product between the first constitutive tensor and

the micropolar strain tensor we obtain the tensor form of the first constitutive equation

as

σ = λ(tr ε)I + (µ+ ν)ε+ (µ− ν)εT. (2.168)

Equation (2.168) may be presented in a matrix form as

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


︸ ︷︷ ︸
σ− stress tensor

=



(λ+ 2µ) 0 0

0 λ 0

0 0 λ


 0 (µ+ ν) 0

(µ− ν) 0 0

0 0 0


 0 0 (µ+ ν)

0 0 0

(µ− ν) 0 0


 0 (µ− ν) 0

(µ+ ν) 0 0

0 0 0


λ 0 0

0 (λ+ 2µ) 0

0 0 λ


0 0 0

0 0 (µ+ ν)

0 (µ− ν) 0


 0 0 (µ− ν)

0 0 0

(µ+ ν) 0 0


0 0 0

0 0 (µ− ν)

0 (µ+ ν) 0


λ 0 0

0 λ 0

0 0 (λ+ 2µ)



︸ ︷︷ ︸
T− constitutive tensor

:

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


︸ ︷︷ ︸
ε− strain tensor

.

(2.169)

In the micropolar continuum theory the couple-stress tensor µ is related to the curvature

tensor κ in a completely analogous way involving three additional material constants.
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Using equations (2.147) and (2.149) we obtain the second set of nine equations as:

µ11 = (α + 2β)κ11 + ακ22 + ακ33, (2.170)

µ12 = (β + γ)κ12 + (β − γ)κ21, (2.171)

µ13 = (β + γ)κ13 + (β − γ)κ31, (2.172)

µ21 = (β − γ)κ12 + (β + γ)κ21, (2.173)

µ22 = ακ11 + (α + 2β)κ22 + ακ33, (2.174)

µ23 = (β + γ)κ23 + (β − γ)κ32, (2.175)

µ31 = (β − γ)κ13 + (β + γ)κ31, (2.176)

µ32 = (β − γ)κ23 + (β + γ)κ32, (2.177)

µ33 = ακ11 + ακ22 + (α + 2β)κ33, (2.178)

or simply

µij = ακppδij + (β + γ)κij + (β − γ)κji, (2.179)

where α, β, γ are additional material parameters of the linear isotropic micropolar con-

tinuum. The tensor form of the second independent constitutive equation is defined as

µ = D : κ, (2.180)

where

D = α I⊗ I + (β + γ)I + (β − γ)IT. (2.181)

Again, by performing the double contraction product between the second constitutive

tensor and the curvature tensor we obtain the tensor form of the second constitutive

equation as

µ = α(tr κ)I + (β + γ)κ+ (β − γ)κT, (2.182)
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which may be written in a matrix form as

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33


︸ ︷︷ ︸
µ− couple stress tensor

=



(α + 2β) 0 0

0 α 0

0 0 α


 0 (β + γ) 0

(β − γ) 0 0

0 0 0


 0 0 (β + γ)

0 0 0

(β − γ) 0 0


 0 (β − γ) 0

(β + γ) 0 0

0 0 0


α 0 0

0 (α + 2β) 0

0 0 α


0 0 0

0 0 (β + γ)

0 (β − γ) 0


 0 0 (β − γ)

0 0 0

(β + γ) 0 0


0 0 0

0 0 (β − γ)

0 (β + γ) 0


α 0 0

0 α 0

0 0 (α + 2β)



︸ ︷︷ ︸
D− constitutive tensor

:

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

 .
︸ ︷︷ ︸
κ− curvature tensor

(2.183)

2.4.1 Relation between material constants and technical con-

stants

The choice of parameters in the constitutive equations is inspired by Nowacki [4]. As

written in [34], the motivation to adopt Nowacki’s choice of parameters lies in the fact that

this notation allows for the description of the extra features of the micropolar elasticity

in a form parallel to the commonly used classical theory of elasticity. The following

restrictions on the material parameters hold true as a consequence of positive definiteness

of the constitutive tensors: 3λ+ 2µ > 0, µ > 0, ν > 0, 3α + 2β > 0, β > 0 and γ > 0.

An alternative representation of the micropolar constitutive equations, attributed to

Eringen [11], is also present in the literature, whereby (see also [62])

tij = λ̃eppδij + (2µ̃+ κ̃)eij + κ̃εijk(rk − φk),
mij = α̃φp,pδij + β̃ϕi,j + γ̃ϕj,i,

(2.184)

in which tij = σji, mij = µji, eij = 1
2
(ui,j + uj,i) is the classical symmetric strain tensor,

ri = 1
2
εijkuk,j is the macrorotation and φk is the microrotation, while α̃, β̃, γ̃, κ̃, µ̃ and

ν̃ represent the corresponding material parameters.

The two sets of material parameters may be related to a set of technical (measurable)

parameters consisting of shear modulus G, Poisson’s ratio n, a dimensionless coupling

number between the macrorotation and the microrotation N ∈ 〈0, 1〉, a dimensionless

polar ratio of rotation sensitivity (a quantity which relates the torsional strains in a way

analogous to that in which Poisson’s ratio relates the normal strains) ψ ∈ 〈0, 3
2
〉, and the

characteristic lengths for torsion and bending lt and lb as [62]

λ = 2n G
1−2n

, µ = G, ν = G N2

1−N2 ,

α =
2G l2t (1−ψ)

ψ
, β = G l2t , γ = G(4l2b − l2t ).

(2.185)
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or in Eringen’s notation as [62]

λ̃ = 2n G
1−2n

, µ̃ = G(2N2−1)
N2−1

, κ̃ = 2GN2

1−N2 ,

α̃ =
2G l2t (1−ψ)

ψ
, β̃ = 2G(l2t − 2l2b ), γ̃ = 4Gl2b .

(2.186)

The relation between the two sets of material parameters is thus equal to

λ = λ̃, µ = µ̃+ κ̃
2
, ν = κ̃

2
,

α = α̃, β = γ̃+β̃
2
, γ = γ̃−β̃

2
.

(2.187)

In some of the older literature (e.g. [57]) µ̃ is sometimes mistaken for the Lamé

parameter µ (the shear modulus G), which is investigated in detail and revealed in the

work of Cowin [63]. Equations (2.185)1 and (2.185)2 thus unambiguously identify λ and

µ as the Lamé parameters.

The constitutive equations together with the equilibrium equations (along with the

associated essential and natural boundary conditions) and the kinematic equations fully

define the mechanical problem of a linear micropolar continuum with displacements and

rotations as the basic unknowns of the problem.
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Chapter 3

Linear finite element analysis

The formulation and numerical results presented in this chapter are presented in:

[64] Grbčić, S., Jelenić, G., Ribarić D., ”Quadrilateral 2D linked-interpolation finite ele-

ments for micropolar continuum”, submitted for publication, 2018.

[65] Grbčić, S., Ibrahimbegović, A., Jelenić, G. ”Variational formulation of micropo-

lar elasticity using 3D hexahedral finite-element interpolation with incompatible modes”,

Computers and Structures, 205, 1-14, 2018.

Many authors worked on finding the numerical solutions of the micropolar continuum

theory using different finite element methods in the linear analysis [35, 39, 36, 40, 42, 41].

Here we present two different approaches in developing novel finite elements, assess their

performance, and attempt to clarify some ambiguities present in the literature regarding

the micropolar finite element method.

In this chapter new linear micropolar finite elements with enhanced interpolation of

the kinematic fields are presented. In the first part, the families of triangular and quadri-

lateral finite elements enhanced with the so-called linked interpolation are developed. The

newly presented membrane finite elements of different order are thus tested and compared

against the conventional Lagrange micropolar finite elements through four numerical ex-

amples. The quadrilateral family of finite elements with linked interpolation is presented

in [64].

In the second part of this chapter we move from 2D to 3D and present a first order

micropolar hexahedral finite element enhanced with the so-called incompatible modes.

Again, the performance of this newly presented finite element is compared against the

conventional first order micropolar hexahedral finite element. The enhanced performance

of the hexahedral finite element with incompatible modes is highlighted while modelling

different boundary value problems which are shown to be significant for the experimental

verification of micropolar material parameters. This part of this thesis is published in

[65].
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All the presented finite elements are coded within the Finite Element Analysis Program

(FEAP) [66].

3.1 Weak form of equilibrium equations in 3D

To construct a numerical solution procedure of the boundary value problem, we aban-

don its strong (or differential) form in favor of the corresponding weak (or integral) form.

The displacement-type weak formulation is obtained by means of the principle of virtual

work stating that the difference between virtual works of external and internal forces

should vanish, i.e.

G(u,ϕ; u,ϕ) = Gint(u,ϕ; u,ϕ)−Gext(u,ϕ) = 0. (3.1)

The virtual work of internal and external forces can be expressed as

Gint(u,ϕ; u,ϕ) =
´
V

(ε : σ + κ : µ)dV,

Gext(u,ϕ) =
´
V

(u · pv +ϕ ·mv)dV +
´
S
(u · ps +ϕ ·ms)dS,

(3.2)

where u and ϕ are the real displacements and real microrotation vectors, u and ϕ are the

virtual displacements and virtual microrotation vectors and ε and κ are the corresponding

tensors of virtual micropolar strains and curvatures, respectively. The algebraic equilib-

rium equations of the finite element method will be thus obtained from the following

fundamental integral principle

ˆ
V

(ε : σ + κ : µ)dV −
ˆ
V

(u · pv +ϕ ·mv)dV −
ˆ
S

(u · ps +ϕ ·ms)dS = 0. (3.3)

In order to obtain the numerical solution of the problem, the kinematic fields have to

be approximated using chosen interpolations. In general, the real and virtual kinematic

fields interpolation are chosen the same leading to uh = Nu de, ϕh = Nϕ de, uh = Nu d
e
,

ϕh = Nϕ d
e
. More precisely, Nu and Nϕ represent the matrices of interpolation functions

over an element for the displacement and microrotation field and de and d
e

represent the

real and virtual vector of element nodal degrees of freedom, respectively. Superscript

h denotes the finite-dimensional approximation and e denotes the element to which the

interpolation is applied. After introducing the chosen interpolation of the kinematic fields

and their virtual counterparts into (3.2) we obtain the interpolated element internal and

external virtual works as

Gint,e(de; d
e
) = d

eT
Kede, Gext,e(d

e
) = d

eT
f e, (3.4)
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where Ke and f e represent the element stiffness matrix and external force vector. The

global internal and external virtual works are obtained by assembly over nelem as the total

number of elements in the mesh, with A as the finite-element assembly operator [56] as

Gint(d; d) =
nelem
A
e=1

Gint,e(de; d
e
) ≡ d

T
Kd, Gext(d) =

nelem
A
e=1

Gext,e(d
e
) ≡ d

T
f , (3.5)

with d and d being the global vectors of real and virtual displacements, and K =
nelem
A
e=1

Ke

and f =
nelem
A
e=1

f e the global stiffness matrix and external force vector. Finally, by substitut-

ing (3.4) in (3.1) we obtain the approximated weak form. For arbitrary values of virtual

parameters, ∀ d, the approximated principle of virtual work leads to the basic algebraic

equations of the finite element method K d = f .

3.2 Governing equations of a 2D micropolar contin-

uum

In order to develop membrane finite elements, the presented boundary value problem

is reduced from 3D to 2D. Consequently, the kinematic fields are in Cartesian coordinates

reduced to only two independent displacements u = 〈ux uy 0〉T and one microrotation

ϕ = 〈0 0 ϕz〉T, which represents an in-plane (or drilling) rotation. For sake of simplicity,

the kinematic fields notation adopted for this 2D analysis is defined as: u = 〈u v〉T, being

reduced to only two components and ϕ = ϕ, being reduced to only one component.

Furthermore, assuming a plane-strain condition, the stress and strain tensors are reduced

to σ = 〈σ11 σ12 σ21 σ22〉T, µ = 〈µ31 µ32〉T and ε = 〈ε11 ε12 ε21 ε22〉T, κ = 〈κ31 κ32〉T

respectively with


σ11

σ12

σ21

σ22

 =


(λ+ 2µ) 0 0 λ

0 (µ+ ν) (µ− ν) 0

0 (µ− ν) (µ+ ν) 0

λ 0 0 (λ+ 2µ)



ε11

ε12

ε21

ε22

 ⇔ σ = C1ε, (3.6)

{
µ31

µ32

}
=

[
(β + γ) 0

0 (β + γ)

]{
κ31

κ32

}
⇔ µ = C2κ, (3.7)

where C1 and C2 stand for the 2D micropolar constitutive tensors. Therefore, the problem

requires only four material parameters λ, µ, ν and β + γ, and the material parameter α

does not exist anymore in the present 2D element formulations. By analysing the positive

definiteness through the eigenvalues of the reduced 2D constitutive tensors in this plane-

strain problem, in order to fulfill the necessary condition of the positiveness of strain
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energy, the following restrictions on material parameters must hold: µ > 0, ν > 0, λ > −µ
and β+γ > 0. Of course, the real material must satisfy this condition in any stress-strain

state, such as the earlier 3D state in which the more stringent conditions β > 0, γ > 0

and λ > −2
3
µ apply. The applied loading is likewise reduced to

pv =


pvx

pvy

0

 =

{
qv

0

}
, mv =


0

0

mvz

 =


0

0

mv

 , (3.8)

ps =


psx

psy

0

 =

{
qs

0

}
, ms =


0

0

msz

 =


0

0

ms

 . (3.9)

The kinematic equations are reduced to
ε11

ε12

ε21

ε22

︸ ︷︷ ︸
ε

=


∂
∂x

0
∂
∂y

0

0 ∂
∂x

0 ∂
∂y


︸ ︷︷ ︸

DT
u

{
u

v

}
︸ ︷︷ ︸

u

+ϕ


0

1

−1

0

︸ ︷︷ ︸
Iϕ

⇔ ε = DT
u u + ϕIϕ, (3.10)

while the curvatures are reduced to{
κ31

κ32

}
︸ ︷︷ ︸

κ

=

{
∂
∂x
∂
∂y

}
︸ ︷︷ ︸

Dϕ
T

ϕ = Dϕ
Tϕ. (3.11)

Next, the chosen interpolation of the kinematic fields is introduced, as described in the

previous section, where, for a 2D problem the real and virtual vector of element nodal

degrees of freedom are defined as de = 〈u1 v1 ϕ1 · · · unnode vnnode ϕnnode〉
T and d

e
=〈

u1 v1 ϕ1 · · · unnode vnnode ϕnnode
〉T

, respectively, where nnode represent the number of

element nodes. For example, by using the conventional Lagrange interpolation [67] we

approximate the real and virtual displacements as

uh = Nud
e, uh = Nud

e
, (3.12)

and the real and virtual microrotation as

ϕh = Nϕ de, ϕh = Nϕ d
e
, (3.13)
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with

Nu =

[
N1 0 0 . . . Nnnode 0 0

0 N1 0 . . . 0 Nnnode 0

]
and (3.14)

Nϕ = 〈0 0 N1 . . . 0 0 Nnnode〉, (3.15)

where Ni(i = 1, ..., nnode) is the ith Lagrangian polynomial. After introducing the chosen

type of interpolation of the kinematic fields and substituting the kinematic equations

(3.10), (3.11) and constitutive equations (3.6), (3.7) in (3.1) we obtain the interpolated

element internal and external virtual works in 2D as

Gint,e(de; d
e
) = d

eT
ˆ
V

(NT
u Du + Nϕ

TIϕ
T)C1(DT

u Nu + IϕNϕ)dV de

+ d
eT
ˆ
V

(Nϕ
TDϕ)C2(Dϕ

TNϕ)dV de = d
eT

Kede, (3.16)

Gext,e(d
e
) =d

eT
ˆ
V

(NT
u qv + Nϕ

Tmv)dV + d
eT
ˆ
S

(NT
u qs + Nϕ

Tms)dS

=d
eT

f e. (3.17)

In order to obtain the global internal and external virtual works Gint and Gext we

apply the finite-element assembly operator as defined in (3.5). Finally, by substituting

Gint and Gext in (3.1) we obtain the approximated weak form. Recognising arbitrariness

of d, we eventually obtain the basic set of algebraic equations of the finite element method

as K d = f .

3.3 Lagrangian and linked interpolation in 2D

Within this section two different interpolations are compared for the families of tri-

angular and quadrilateral membrane finite elements. The first one is the conventional

Lagrange interpolation presented in (3.12) and (3.13). The second interpolation analysed

is the linked interpolation in which the displacement field in addition depends on the

nodal microrotation. The linked interpolation for the displacement field consists of the

conventional Lagrange interpolation (represented by matrix Nu) enhanced by the contri-

bution due to the nodal microrotations. In general, the linked interpolation is therefore

given as

uh = (Nu + Nenh)de, uh = (Nu + Nenh)d
e
, (3.18)

where Nenh is the matrix of linked-interpolation enhancement to the Lagrangian inter-

polation. In the linked-interpolation framework, the microrotations are still interpolated

conventionally, as defined in equation (3.13).

The linked interpolation is in [68] derived as the exact solution of differential equations

of a 3D Timoshenko beam. For the present purposes let us limit our attention to its 2D
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form [69, 70], where the displacement field along the in-plane axis z orthogonal to the

centroidal line x of the beam is

w =

nnode∑
i=1

Niwi −
L

nnode

nnode∑
i=1

ξ − ξi
2

Niϕi, (3.19)

while the rotation field around the out-of-plane axis y orthogonal to the centroidal line is

simply

ϕ =

nnode∑
i=1

Niϕi, (3.20)

where L is the finite-element length, ξ ∈ [−1, 1] is the natural co-ordinate, nnode is the

number of nodes on the element, ϕi and wi are the rotation and the displacement at

the ith node, Ni is the ith Lagrange polynomial of order nnode − 1, ξi is the natural co-

ordinate of the ith node, and the axes x, y, z form a right-handed co-ordinate system. The

displacement field is thus interpolated by a polynomial one order higher than that used

for the rotations. The Lagrangian polynomials are given as

Ni =

nnode∏
j=1
j 6=i

(ξj − ξ)
(ξj − ξi)

, i = 1, ..., nnode. (3.21)

In order to generalise the linked interpolation concept presented to 2D micropolar

continuum, it is important to note that, in contrast to beams, for this continuum in

general there does not exist a closed-form solution of the differential equations. The

approach that we take is the following: (i) we apply interpolation (3.19) to the element

edges only, i.e. we treat the element edges as beam finite elements and (ii) we average

the edge results within the interior of the element depending on the actual position, so

that that interpolation correctly describes rigid-body motion. To do this, we follow the

approach proposed in [69, 70] for the Mindlin plate elements.

3.3.1 Triangular finite elements

The triangular finite element family with the related shape functions is defined in the

natural coordinate system. The mapping from the natural coordinate system (ξ, η) to the

Cartesian coordinate system (x, y) is defined as:

x =

nnode∑
a=1

Na(ξ, η)xa, y =

nnode∑
a=1

Na(ξ, η)ya, (3.22)

where nnode stands for the number of element nodes, (xa, ya) represent the element nodal

coordinates in the Cartesian coordinate system and Na(ξ, η) represent the isoparametric
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shape functions with arguments ξ, η which run between [0, 1]. The transformation between

the global and natural coordinate system is shown in Figure 3.1.

Figure 3.1: Transformation between the global and natural coordinate system for the
first-order triangular element

The global derivatives of shape functions are given by the standard chain rule expressions

using the so-called Jacobian matrix of transformation, which is for the present 2D problem

defined as J =
∂(x, y)

∂(ξ, η)
[67], i.e.{

∂Ni
∂x
∂Ni
∂y

}
=

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
︸ ︷︷ ︸

J−1

{
∂Ni
∂ξ
∂Ni
∂η

}
. (3.23)

Here we consider the elements with three, six or ten nodes, with a node-numbering

convention as shown in Figure 3.2.

(a) Order 1 element (T3) (b) Order 2 element (T6) (c) Order 3 element (T10)

Figure 3.2: Triangular finite elements of different order

The shape functions in (3.22) are most easily expressed via a set of the so-called area

coordinates

ζ1(ξ, η) = 1− ξ − η, ζ2(ξ, η) = ξ, ζ3(ξ, η) = η. (3.24)
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For the edge nodes in Figure 3.2 taken at the edge halves in T6 and at the edge thirds in

T10 and the inner node in T10 in its centroid they are given in Table 3.1.

Table 3.1: Triangular shape functions

Element T3 T6 T10

Vertex shape functions
Na = ζa Na = ζa(2ζa − 1) Na = 1

2
ζa(3ζa − 1)(3ζa − 2)

(a = 1, 2, 3)

Edge shape functions

- Ni+3 = 4ζiζj

N2i+2 = 9
2
ζiζj(3ζi − 1)

(i = 1, 2, 3, N2i+3 = 9
2
ζiζj(3ζj − 1)

j = max(1; i+ 1 < 4))

Centroid node shape function - - N10 = 27ζ1ζ2ζ3

For the Lagrangian family of elements the same shape functions are used for the inter-

polation of real and virtual displacements and rotations as given in equations (3.12) and

(3.13). For the family of elements with linked interpolation, the rotations are still in-

terpolated using the Lagrange polynomials and (3.13), but in the displacement field we

now have an enhancement in the displacement field as shown in equation (3.18). For the

elements of different order, this enhancement is now defined following the approach given

in [70].

3.3.1.1 Triangular membrane element with three nodes (T3LI)

In analogy with the linked interpolation for a beam element (3.19), when applied to

a two-noded beam, we propose the linked interpolation for the triangular element with

three nodes and three degrees of freedom per node, named T3LI and shown in Figure

3.2a) such that

uh = (Nu + Nenh)de =
3∑

a=1

Na

{
ua

va

}
+

1

2
ζ2ζ3(ϕ2 − ϕ3)

{
y2 − y3

x3 − x2

}
+

+
1

2
ζ3ζ1(ϕ3 − ϕ1)

{
y3 − y1

x1 − x3

}
+

+
1

2
ζ1ζ2(ϕ1 − ϕ2)

{
y1 − y2

x2 − x1

}

=
3∑

a=1

Naua +

{
f1,x

f1,y

}
(ϕ2 − ϕ3) +

{
f2,x

f2,y

}
(ϕ3 − ϕ1)+

+

{
f3,x

f3,y

}
(ϕ1 − ϕ2), (3.25)
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where fi,x = 1
2
ζjζk(yj − yk), fi,y = 1

2
ζjζk(xk − xj) and i, j, k is a cyclic permutation of

1, 2, 3 resulting in Nenh =
[
Nenh,1 Nenh,2 Nenh,3

]
where

Nenh,i =

[
0 0 fk,x − fj,x
0 0 fk,y − fj,y

]
. (3.26)

An analogous interpolation is proposed in [71] where a triangular element with three

nodes based on the classical continuum theory and incorporating the so-called drilling

degrees of freedom has been developed. The displacement interpolation in [71] has been

also derived by linking the displacements with the drilling rotations obtaining a form

analogous to (3.25). Due to the need for incorporating rotations in the finite element

meshes involving 2D solids and beam elements, this work has generated considerable

interest in the finite element community.

3.3.1.2 Triangular membrane element with six nodes (T6LI)

Now we generalise the linked interpolation of a beam element (3.19) applied to a three-

noded beam to a triangular element with six nodes and three degrees of freedom per node,

named T6LI and shown in Figure 3.2b). The displacement interpolation thus follows as

uh = (Nu + Nenh)de =
6∑

a=1

Na(ξ, η)

{
ua

va

}
+

+
1

3
ζ1ζ2(ζ2 − ζ1)(ϕ1 − 2ϕ4 + ϕ2)

{
y2 − y1

x1 − x2

}
+

+
1

3
ζ2ζ3(ζ3 − ζ2)(ϕ2 − 2ϕ5 + ϕ3)

{
y3 − y2

x2 − x3

}
+ (3.27)

+
1

3
ζ3ζ1(ζ1 − ζ3)(ϕ3 − 2ϕ6 + ϕ1)

{
y1 − y3

x3 − x1

}
,

from where Nenh immediately follows.

3.3.1.3 Triangular membrane element with ten nodes (T10LI)

Finally, we develop the triangular element with ten nodes shown in Figure 3.2c), which

we name T10LI. Generalising the linked interpolation for a beam element (3.19) applied

to a four-node element

uh =(Nu + Nenh)de =
10∑
a=1

Na(ξ, η)

{
ua

va

}
+
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+
1

8
ζ1ζ2(3ζ1 − 1)(3ζ2 − 1)

{
y2 − y1

x1 − x2

}
(ϕ1 − 3ϕ4 + 3ϕ5 − ϕ2)+

+
1

8
ζ2ζ3(3ζ2 − 1)(3ζ3 − 1)

{
y3 − y2

x2 − x3

}
(ϕ2 − 3ϕ6 + 3ϕ7 − ϕ3)+ (3.28)

+
1

8
ζ3ζ1(3ζ3 − 1)(3ζ1 − 1)

{
y1 − y3

x3 − x1

}
(ϕ3 − 3ϕ8 + 3ϕ9 − ϕ1),

from where Nenh again immediately follows.

3.3.2 Quadrilateral finite elements

The second family of finite elements we develop are quadrilateral elements of order

1, 2 and 3 shown in Figure 3.4 with three degrees of freedom per node (horizontal and

vertical displacements, microrotation). As for the triangular elements, the quadrilateral

finite element family and the corresponding shape functions are defined in the natural

coordinate system where the mapping is again defined by (3.22), where here we consider

the elements with four, nine and sixteen nodes (Q4, Q9, Q16) and ξ and η run between

[−1, 1]. The transformation between the global and natural coordinate system for the

first-order quadrilateral finite element is shown in Figure 3.3.

Figure 3.3: Transformation between the global and natural coordinate system for the
first-order quadrilateral element

The node-numbering convention for the elements is shown in Figure 3.4.
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(a) Order 1 element (Q4) (b) Order 2 element (Q9) (c) Order 3 element (Q16)

Figure 3.4: Quadrilateral finite elements of different order

The shape functions in (3.22) are given for ξ1 = ξ4 = −1, ξ2 = ξ3 = +1, η1 = η2 =

−1, η3 = η4 = +1 as follows. For Q4, they are defined as Na(ξ, η) = 1
4
(1 + ξaξ)(1 + ηaη).

For Q9 with ξ8 = −1, ξ5 = ξ7 = ξ9 = 0, ξ6 = +1, η5 = −1, η6 = η8 = η9 = 0 and η7 = +1

they are given as

Vertex nodes: Na =
1

4
ξη(ξ + ξa)(η + ηa),

Edge nodes 5 and 7: Na =
1

2
η(1− ξ2)(η + ηa),

Edge nodes 6 and 8: Na =
1

2
ξ(ξ + ξa)(1− η2),

Central node: N9 = (1− ξ2)(1− η2).

while for Q16 with ξ11 = ξ12 = −1, ξ5 = ξ10 = ξ13 = ξ16 = −1
3
, ξ6 = ξ9 = ξ14 = ξ15 = +1

3
,

ξ7 = ξ8 = +1, η5 = η6 = −1, η7 = η12 = η13 = η14 = −1
3
, η8 = η11 = η15 = η16 = +1

3
and

η9 = η10 = +1 they are given as

Vertex nodes: Na =
81

256
(1 + ξaξ)(1 + ηaη)(

1

9
− ξ2)(

1

9
− η2),

Edge nodes with ξa = ±1 and ηa = ±1

3
: Na =

243

256
(1− ξ2)(η2 − 1

9
)(

1

3
+ 3ξaξ)(1 + ηaη),

Edge nodes with ξa = ±1

3
and ηa = ±1 : Na =

243

256
(1− η2)(ξ2 − 1

9
)(

1

3
+ 3ηaη)(1 + ξaξ),

Internal nodes: Na =
729

256
(1− ξ2)(1− η2)(

1

3
+ 3ηaη)(

1

3
+ 3ξaξ).

As in the family of triangular elements, for the quadrilateral elements of the Lagrangian

type, the interpolation for the displacements and rotations are given by (3.12) and (3.13),

the latter again also remaining valid for the quadrilateral family of elements with linked

interpolation. The enhancement in the displacement field Nenh in (3.18) is now defined

following the approach given in [69], based on the expression (3.19) for the linked inter-

polation in beams.
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In [69] the authors have additionally enhanced the proposed finite elements with linked

interpolation by introducing additional bubble modes. However, their numerical results

have shown that the bubble mode contribution to the obtained result is negligible, except

for the higher order patch test satisfaction. Therefore, the presented elements are not

enhanced with additional modes.

3.3.2.1 Quadrilateral finite element with four nodes (Q4LI)

For the quadrilateral element with four nodes shown in Figure 3.4a), named Q4LI, we

define the displacement interpolation as

uh = (Nu + Nenh)de =
4∑

a=1

Na(ξ, η)

{
ua

va

}
+

+
1

8

1

2
(1− ξ2)(1− η)

{
y2 − y1

x1 − x2

}
(ϕ2 − ϕ1)+

+
1

8

1

2
(1 + ξ)(1− η2)

{
y3 − y2

x2 − x3

}
(ϕ3 − ϕ2)+

+
1

8

1

2
(1− ξ2)(1 + η)

{
y4 − y3

x3 − x4

}
(ϕ4 − ϕ3)+

+
1

8

1

2
(1− ξ)(1− η2)

{
y1 − y4

x4 − x1

}
(ϕ1 − ϕ4)

=
4∑

a=1

Na(ξ, η)

{
ua

va

}
+

+

{
f1,x

f1,y

}
(ϕ1 − ϕ2) +

{
f2,x

f2,y

}
(ϕ2 − ϕ3)+

+

{
f3,x

f3,y

}
(ϕ3 − ϕ4) +

{
f4,x

f4,y

}
(ϕ4 − ϕ1), (3.29)

where f1,x = 1
16

(1−ξ2)(1−η)(y1−y2), f2,x = 1
16

(1+ξ)(1−η2)(y2−y3), f3,x = 1
16

(1−ξ2)(1+

η)(y3 − y4), f4,x = 1
16

(1− ξ)(1− η2)(y4 − y1) and f1,y = 1
16

(1− ξ2)(1− η)(x2 − x1), f2,y =
1
16

(1+ξ)(1−η2)(x3−x2), f3,y = 1
16

(1−ξ2)(1+η)(x4−x3), f4,y = 1
16

(1−ξ)(1−η2)(x1−x4)

resulting in Nenh =
[
Nenh,1 Nenh,2 Nenh,3 Nenh,4

]
where

Nenh,1 =

[
0 0 f1,x − f4,x

0 0 f1,y − f4,y

]
, Nenh,2 =

[
0 0 f2,x − f1,x

0 0 f2,y − f1,y

]
, (3.30)

Nenh,3 =

[
0 0 f3,x − f2,x

0 0 f3,y − f2,y

]
, Nenh,4 =

[
0 0 f4,x − f3,x

0 0 f4,y − f3,y

]
.
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3.3.2.2 Quadrilateral finite element with nine nodes (Q9LI)

For the quadrilateral element with nine nodes shown in Figure 3.4b), named Q9LI, we

define the displacement interpolation as

uh =(Nu + Nenh)de =
9∑

a=1

Na(ξ, η)

{
ua

va

}
+

− 1

8

1

3
ξη(1− ξ2)(1− η)

{
y2 − y1

x1 − x2

}
(ϕ1 − 2ϕ5 + ϕ2)+

+
1

4

1

3
ξ(1− ξ2)(1− η2)

{
y6 − y8

x8 − x6

}
(ϕ8 − 2ϕ9 + ϕ6)+

+
1

8

1

3
ξη(1− ξ2)(1 + η)

{
y3 − y4

x4 − x3

}
(ϕ4 − 2ϕ7 + ϕ3)+ (3.31)

+
1

8

1

3
ξη(1− ξ)(1− η2)

{
y4 − y1

x1 − x4

}
(ϕ1 − 2ϕ8 + ϕ4)+

− 1

4

1

3
η(1− ξ2)(1− η2)

{
y7 − y5

x5 − x7

}
(ϕ5 − 2ϕ9 + ϕ7)+

− 1

8

1

3
ξη(1 + ξ)(1− η2)

{
y3 − y2

x2 − x3

}
(ϕ2 − 2ϕ6 + ϕ3)

from where Nenh follows in a straight-forward way.

3.3.2.3 Quadrilateral finite element with sixteen nodes (Q16LI)

For the quadrilateral element with sixteen nodes shown in Figure 3.4c) and named

Q16LI, we define the displacement interpolation as

uh =(Nu + Nenh)de =
16∑
a=1

Na(ξ, η)

{
ua

va

}
+

+
1

4
I1ηNξ

{
y2 − y1

x1 − x2

}
(ϕ1 − 3ϕ5 + 3ϕ6 − ϕ2)+

+
1

4
I2ηNξ

{
y7 − y12

x12 − x7

}
(ϕ12 − 3ϕ13 + 3ϕ14 − ϕ7)+

+
1

4
I3ηNξ

{
y8 − y11

x11 − x8

}
(ϕ11 − 3ϕ16 + 3ϕ15 − ϕ8)+

+
1

4
I4ηNξ

{
y3 − y4

x4 − x3

}
(ϕ4 − 3ϕ10 + 3ϕ9 − ϕ3)+ (3.32)

57



− 1

4
I1ξNη

{
y4 − y1

x1 − x4

}
(ϕ1 − 3ϕ12 + 3ϕ11 − ϕ4)+

− 1

4
I2ξNη

{
y10 − y5

x5 − x10

}
(ϕ5 − 3ϕ13 + 3ϕ16 − ϕ10)+

− 1

4
I3ξNη

{
y9 − y6

x6 − x9

}
(ϕ6 − 3ϕ14 + 3ϕ15 − ϕ9)+

− 1

4
I4ξNη

{
y3 − y2

x2 − x3

}
(ϕ2 − 3ϕ7 + 3ϕ8 − ϕ3)

where I1ξ = − 9
16

(ξ2 − 1
9
)(ξ − 1), I2ξ = 27

16
(ξ2 − 1)(ξ − 1

3
), I3ξ = 27

16
(ξ2 − 1)(ξ + 1

3
), I4ξ =

9
16

(ξ2− 1
9
)(ξ + 1), Nξ = 9

32
(ξ2− 1

9
)(ξ2− 1),and analogously for I1η, I2η, I3η, I4η, Nη using

the variable η. From here, Nenh again follows immediately.

3.4 Numerical examples in 2D

In this section the presented families of elements are analysed through four numerical

examples. The convergence analysis is performed on a force patch test using a regular

mesh in Section 3.4.1 and the conclusions drawn are implemented in the procedure to

run the displacement patch test on an irregular mesh (Section 3.4.2) due to Providas and

Kattis [36]. In Section 3.4.3, an infinite plate with a cylindrical hole subject to uniform

tension is analysed and the results are compared to the analytical solution [13]. Finally,

in Section 3.4.4, a cantilever beam in pure bending is analysed against the analytical

solution [1]. In all the examples, both the standard Lagrange finite elements and the newly

presented linked-interpolation finite elements are tested. Furthermore, it is important to

note that all micropolar parameters are chosen to be greater than zero in all the presented

examples, leading to fulfilment of the necessary condition of positiveness of the strain

energy.

3.4.1 Force patch test in 2D: cantilever beam subject to pure

tension

A force patch test shown in Figure 3.5 is performed on a cantilever beam of length

L = 10 m, height h = 2 m and a unit thickness subject to pure axial distributed loading

p = 10 N/m2 using a number of regular meshes. The micropolar material parameters

used are equal to µ = 1000 N/m2, λ = 1000 N/m2, ν = 500 N/m2 and β = γ = 20 N.

In this example the analytical results for the stress fields (all components of the stress

tensor and the couple-stress tensor equal to zero apart from the axial tension, which is

equal to p) and the axial displacement at the free end (pL/E) are expected to be obtained
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for an arbitrary number of finite elements in the mesh. The results of the test for triangular

and quadrilateral finite elements with the conventional (Lagrange) interpolation and with

the newly proposed linked interpolation are given in Table 3.2.

Figure 3.5: A cantilever beam subject to pure tension

To understand why most of the linked-interpolation elements fail this test and find

the solution for how to modify them in order to pass it, an inversely posed problem has

been studied which consists of the following: the correct nodal displacement and rotations

have been prescribed to the elements with linked interpolation and the resulting stress

and couple-stress tensors as well as the nodal load vector have been analysed. It turns out

that all the stress and stress-couple components are exact but, in the nodal load vector,

the incorrect moment components are generated by the linked interpolation applied to

the virtual displacements. Interstingly, this does not happen in the quadratic elements

T6LI and Q9LI.

Table 3.2: Results for the force patch test

Triangular elements Quadrilateral elements

Element RESULT Element RESULT

T3 passed Q4 passed

T3LI failed Q4LI failed

T6 passed Q9 passed

T6LI passed Q9LI passed

T10 passed Q16 passed

T10LI failed Q16LI failed

Motivated by this observation, a solution is found by applying the Petrov–Galerkin

finite-element method, which is based on different interpolation for the test and the trail

functions – here the virtual and the actual displacement fields. To eliminate the anomalous
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nodal moments caused by the linked interpolation of the virtual displacements u, here we

choose to interpolate them using the standard Lagrangian polynomials, i.e.

u = Nud. (3.33)

The real displacements, however, are still interpolated using the linked interpolation, i.e.

u = (Nu + Nenh)d. (3.34)

The microrotation interpolation remains unchanged in both its virtual and its real form,

i.e. ϕ = Nϕd and ϕ = Nϕd. The Petrov-Galerkin modification described is applied

to those elements which fail the patch test. We refer to these elements as T3LI(PG),

T10LI(PG), Q4LI(PG) and Q10LI(PG). When performing the same patch test using the

elements based on the Petrov-Galerkin method, the patch test for all the elements is

passed, as shown in Table 3.3.

Table 3.3: Results for the force patch test for the linked-interpolation finite elements
based on the Petrov-Galerkin method

Triangular elements Quadrilateral elements

Element RESULT Element RESULT

T3LI(PG) passed Q4LI(PG) passed

T10LI(PG) passed Q16LI(PG) passed

To understand why the quadratic elements with linked interpolation (T6LI and Q9LI)

pass this patch test, while the linear and the cubic elements (T3LI, T10LI, Q4LI and

Q16LI) do not, let us pinpoint the main difference between these two groups of elements

in the character of the enhanced shape functions caused by the linked interpolation. In the

linear and the cubic elements, the enhancement is symmetric, which, when integrated over

the element domain, give a non-zero value, and thus provide non-desired nodal moments

for the constant-stress state present here. On the other hand, the enhanced interpolation

functions for the quadratic elements are antisymmetric and thus integrate to zero for

the constant-stress state. Clearly, for quadrilaterals, this argument is applicable only to

rectangular quadratic elements. For non-regular meshes, Q9LI should not be expected

to retain this property and would have to be accordingly modified into Q9LI(PG). The

general forms of the enhanced shape functions for triangular and quadrilateral elements

are shown in Figures 3.6 and 3.7.
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(a) Linked interpolation function character of
T3LI elements

(b) Linked interpolation function character of
T6LI elements

(c) Linked interpolation function character of
T10LI elements

Figure 3.6: Character of the linked shape function of triangular family elements
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(a) Linked interpolation function character of
Q4LI elements

(b) Linked interpolation function character of
Q9LI elements

(c) Linked interpolation function character of
Q16LI elements

Figure 3.7: Character of the linked shape function of quadrilateral family elements

Another approach to satisfy the convergence criteria may be provided along the lines

of the modification of the matrix of enhanced interpolation proposed by Wilson and

Ibrahimbegović [72]. In their work they impose the requirement that the enhanced part

of the interpolation under the state of constant stress does not contribute to the strain

energy. In order to satisfy this requirement, the matrix of enhanced interpolation has

to be modified by adding a constant correction matrix, which makes the enhanced part

to vanish for a state of constant stress. Even though in this part this approach is not

analysed, we point out that it is a possible methodology for modifying the elements with

linked interpolation to satisfy the patch test. This approach will be used in the next

section, when developing the 3D hexahedral finite element with incompatible modes.
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3.4.2 2D displacement patch tests for micropolar continuum

According to Providas and Kattis [36] the patch test for micropolar finite elements

should consist of a set of three separate tests. The tests are performed on a rectangular

domain bounded by the sides connecting the points 1–4 in Figure 3.8 and discretised

using the distorted finite-element mesh shown. The length and height of the domain are

L = 0.24 m, H = 0.12 m and the coordinates of the internal nodes 5–8 are the following

5=(0.04,0.02), 6=(0.18,0.03), 7=(0.08,0.08) and 8=(0.16,0.08). The material parameters

used are the same as defined in the force patch test example. The displacements and

microrotations are imposed on the external nodes, while the volume loading (if any) is

imposed on the interior of the domain. The element passes a patch test if the inter-

nal nodes are capable of reproducing the analytical solution imposed by the boundary

conditions.

(a) Displacement patch test: quadrilateral FE
mesh

(b) Displacement patch test: triangular FE
mesh

Figure 3.8: Finite element mesh for the displacement patch test

The first test is the standard patch test of the finite elements in the classical continuum

theory, whereby imposing linearly varying displacement and a constant microrotation field

via appropriate boundary conditions we obtain the state of constant symmetric stress and

strain. The fields are defined as follows:

u = 10−3(x+ 0.5y), v = 10−3(x+ y), ϕ = 0.25 · 10−3. (3.35)

The second test describes the state of constant non-symmetric shear (both in stress and

strain), for which a constant body moment is needed. The actual input is given as

u = 10−3(x+ 0.5y), v = 10−3(x+ y), ϕ = 0.75 · 10−3, mv = 1. (3.36)

The third test describes the state of constant curvature, whereby imposing linearly varying

displacement, microrotation and body moment fields as well as a constant body force

field we obtain linearly varying stresses and constant couple-stresses. Providas and Kattis

consider the third patch test to be a necessary condition for finite-element convergence
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even though in this test the shear stresses are linearly varying :

u = 10−3(x+ 0.5y), v = 10−3(x+ y), ϕ = 10−3(0.25 + (x− y)),

pvx = pvy = 1, mv = 2(x− y).
(3.37)

According to [67], however, satisfaction of a patch test in which stress distribution is

variable is not necessary for convergence and, for this reason, we consider this test to be

a higher-order patch test, analogous to a pure bending test.

The constant stress tests are analysed first. As indicated earlier, when using an irregu-

lar mesh present here, the Q9LI element fails the first two patch tests. Its Petrov-Galerkin

modification Q9LI(PG), however, passes them, as do also all the other proposed elements.

Regarding the third test, all the elements in which the standard Lagrangian interpo-

lation has been utilised pass it (as does also the element given in [42]), which is expected

even though it contradicts the results in the literature [36, 40]. For the highest-order

elements T10 and Q16, however, the amount of data provided on the boundary has not

been sufficient and four additional internal nodes have had to be additionally prescribed

the field values to pass it. Concerning the family of elements with linked interpolation,

T3LI(PG) and Q4LI(PG) fail to pass this test, while all the higher-order elements pass it.

The results of the third test for the elements which do not pass it are presented in Table

3.4. Even though this patch test is not satisfied for the lower-order elements of finite

size, we consider that all the proposed elements satisfy the convergence criteria since, as

argued earlier, they are able to reproduce exactly any state of constant stress.

Table 3.4: Results for Patch test 3 [36]

(a) Displacements at node 6 and stresses in Gauss point at (0.0933, 0.006667)

Element u · 10−3 v · 10−3 ϕ · 10−3 σ11 σ12 σ21 µ31 µ32

T3 0.195 0.210 0.400 4.00 1.59 1.41 0.04 -0.040

T3LI(PG) 0.194 0.205 0.401 4.01 1.54 1.36 0.04 -0.041

Exact 0.195 0.210 0.400 4.00 1.59 1.41 0.04 -0.040

(b) Displacements at node 6 and stresses in Gauss point at (0.176027, 0.0281456)

Element u · 10−3 v · 10−3 ϕ · 10−3 σ11 σ12 σ21 µ31 µ32

Q4 0.1950 0.210 0.400 4.00 1.65 1.35 0.0400 -0.040

Q4LI(PG) 0.1946 0.205 0.401 4.03 1.70 1.44 0.0404 -0.038

Exact 0.1950 0.210 0.400 4.00 1.65 1.35 0.0400 -0.040
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3.4.3 Stress concentration around a circular hole

To analyse the influence of the micropolar effect in a homogeneous and isotropic linear

elastic solid, the so-called Kirsch problem [73] – an infinite plate with a circular hole sub-

ject to uniform tension – is considered next. We focus on the so-called stress-concentration

factor (Kt) – the ratio between a maximum longitudinal stress at the edge of the hole

and the applied surface loading. The classical theory predicts a constant stress concen-

tration factor equal to three regardless of the hole size and the material parameters, i.e.

Kt,CC =
σmax
σavg

= 3 where σmax is the maximum stress in the vicinity of the hole and σavg

is the average stress in the sections far from the hole, as shown in Figure 3.9.

Figure 3.9: Distribution of stresses around a hole in an infinite plate – Kirsch problem

Experimental tests, e.g. [8], however, indicate a smaller stress-concentration factor than

that. To model the Kirsch problem correctly, additional effects have to be taken into

account, which is possible using the micropolar theory. The analytical solution of the

problem using the micropolar theory [13], however, is dependent on the hole radius r,

the coupling number N and the characteristic length l of the material and it returns the

stress-concentration factor which is increasingly smaller than the one obtained by the

classical theory as the diameter of the hole decreases.

In our numerical analysis, the plate is necessarily taken to be of a finite size and only

a quarter of the plate is analysed. The square quarter is taken to be of unit thickness,

L = 16.2 mm long and with a hole of radius r = 0.216 mm subject to uniform uniaxial

tension psx = 1 N/mm2 acting on one of its undented sides. The micropolar material

parameters µ = 76923.1 N/mm2, λ = 115385.0 N/mm2, β = γ = 6352.25 N, which

correspond to the modulus of elasticity E = 200000 N/mm2, Poisson’s ratio n = 0.3 and

a characteristic length l = r/1.063 = 0.2031984948 m are taken from [36]. The value

of the micropolar material parameter ν is varied (indicating a variation in the coupling

number N). The normal displacements and the microrotations along the dented sides

are restrained. It is important to note that, since we are only analysing a quarter of the
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plate, without restraining the microrotations the numerical results would not converge to

the analytical solution given in [13].

L

psx

(a) Triangular elements

L

psx

(b) Quadrilateral elements

Figure 3.10: Finite-element mesh for the Kirsch problem

The results obtained by the proposed triangular and quadrilateral elements with linked

interpolation are compared to those obtained by the finite elements with standard La-

grangian interpolation. The finite element meshes for triangular and quadrilateral ele-

ments, shown in Figure 3.10, consist of 360 and 176 elements, respectively, and are gen-

erated using software GMSH [74]. In the structured part of the mesh the finite elements

project radially from the hole and are embedded within 22 concentric circles propagating

in geometric progression with ratio between the radial increments of 1.2. The part of

the mesh between the outermost band of the elements between the concentric circles and

the undented edges is defined manually. The input file for GMSH can be found in the

Appendix C.

The stresses are observed in the element containing the stress-concentration point

P=(0.0, 0.216), where the analytical solution is provided. To avoid extrapolation of

the computed stresses, the stress values for the numerical simulation are given at Gauss

points closest to the edge of the hole, not at the exact edge, thus they can never exactly

match the analytical result. For easier comparison with [36] the chosen integration for

all triangular elements is 7 Gauss integration points per element, which brings us closer

to the edge, where the analytical solution and Providas and Kattis’s solutions are given.

Considering quadrilateral finite elements, the minimum order of integration needed is used,

i.e. 3× 3 for order 1 elements, 4× 4 for order 2 elements and 5× 5 for order 3 elements.

The Gauss points monitored have the co-ordinates equal to GP1=(0.00251643, 0.243476),
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GP2=(0.0199002, 0.218483) and GP3=(0.0198966, 0.21843) for the triangular elements,

and GP4=(0.0048953, 0.222164), GP5=(0.00300768, 0.220075) and GP6=(0.00201581,

0.218758) for the rectangular elements. The results for the stresses obtained using the

triangular and the quadrilateral elements are shown in Tables 3.5 and 3.6, respectively.

Table 3.5: Triangular elements: Stress-concentration factor Kt

N ν Kt, [13] Element Kt, GP1 Element Kt, GP2 Element Kt, GP3

0.0 0.0 3.00 T3 2.846 T6 2.865 T10 2.849

T3LI(PG) 2.846 T6LI 2.897 T10LI(PG) 2.849

0.25 5130.77 2.849 T3 2.737 T6 2.729 T10 2.715

T3LI(PG) 2.740 T6LI 2.729 T10LI(PG) 2.715

0.50 25 638.5 2.555 T3 2.508 T6 2.466 T10 2.454

T3LI(PG) 2.514 T6LI 2.466 T10LI(PG) 2.454

0.75 98 900.0 2.287 T3 2.267 T6 2.228 T10 2.219

T3LI(PG) 2.273 T6LI 2.228 T10LI(PG) 2.219

0.90 327 938.0 2.158 T3 2.101 T6 2.117 T10 2.108

T3LI(PG) 2.109 T6LI 2.117 T10LI(PG) 2.108

The numerical results for all the elements show that with the micropolar effect in-

creased (through the coupling number N) the stress-concentration factor is reduced, as

predicted theoretically. The predictive power of all the elements, however, decreases as

the coupling number increases.

Table 3.6: Quadrilateral elements: Stress-concentration factor Kt

N ν Kt, [13] Element Kt, GP4 Element Kt, GP5 Element Kt, GP6

0.0 0.0 3.00 Q4 2.904 Q9 2.911 Q16 2.916

Q4LI(PG) 2.904 Q9LI(PG) 2.911 Q16LI(PG) 2.916

0.25 5130.77 2.849 Q4 2.768 Q9 2.769 Q16 2.774

Q4LI(PG) 2.769 Q9LI(PG) 2.769 Q16LI(PG) 2.774

0.50 25 638.5 2.555 Q4 2.496 Q9 2.492 Q16 2.498

Q4LI(PG) 2.497 Q9LI(PG) 2.492 Q16LI(PG) 2.498

0.75 98 900.0 2.287 Q4 2.236 Q9 2.240 Q16 2.248

Q4LI(PG) 2.236 Q9LI(PG) 2.240 Q16LI(PG) 2.248

0.90 327 938.0 2.158 Q4 2.104 Q9 2.119 Q16 2.129

Q4LI(PG) 2.104 Q9LI(PG) 2.119 Q16LI(PG) 2.129

With the higher-order elements of both the triangular and the quadrilateral type, the

linked-interpolation elements’ behaviour is in this example exceedingly close to that of
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the standard elements, i.e. these elements do not contribute to the faster convergence

rate. In such a highly tension-dominated problem, expectedly, the linked-interpolation

(incorporating polynomials of order 2 and higher) is not needed. Also, the stress val-

ues for the numerical simulation are given at Gauss points closest to the edge of the

hole (whose position differs depending on the integration order) not at the exact edge,

thus they can never exactly match the analytical result. Interestingly, the higher-order

linked-interpolation element T6LI does behave marginally better than its Lagrangian

counterparts when there is no micropolar effect present. With the low-order triangular

elements, the linked-interpolation slightly improves the accuracy, this time however with

an increasing micropolar effect. This behaviour is not observed in the low-order quadri-

lateral elements, though. Finally, as in [36], it is observed that in the triangular elements,

depending on the value of the micropolar effects, the higher-order elements often pro-

duce results of lower accuracy than the low-order elements. This effect, however, is not

observed in the quadrilateral elements.

By refining the finite element mesh in the vicinity of the hole, we expect to get closer

to the analytical solution, due to two reasons. The first one is the expected convergence

as a consequence of the mesh refinement, being in the spirit of the finite element method,

while the second one lays in the simple fact that, as we refine the mesh in the vicinity of

the hole, the position of the integration point also tends to the edge, where the analytical

solution is provided. In order to demonstrate this, the problem is additionally solved

using Q4LI(PG) by retaining the same number of elements, but by increasing the ratio

between the radial increments in the mesh which makes the mesh finer in the vicinity of

the hole. The ratios are chosen as 1.5 and 1.8 and the results for stresses are observed

in Gauss points GP7 = (0.00475192, 0.215653) and GP8 = (0.00474938, 0.215536) and

presented in Table 3.7. We can see that the obtained results are closer to the analytical

solution due to the reasons mentioned above.

Table 3.7: Quadrilateral element Q4LI(PG): Stress-concentration factor Kt for meshes
of different densities around the hole

N Kt, [13]
ratio = 1.2 ratio = 1.5 ratio = 1.8

Kt, GP4 Kt, GP7 Kt, GP8

0.0 3.00 2.904 2.922 2.992

0.25 2.849 2.769 2.785 2.849

0.50 2.555 2.497 2.512 2.562

0.75 2.287 2.236 2.257 2.291

0.90 2.158 2.104 2.128 2.152
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3.4.4 A cantilever beam subject to pure bending in 2D – higher-

order patch test

In an attempt to determine the micropolar material constants experimentally, the

analytical solution for stresses, displacements and microrotations of a micropolar elastic

plate subject to pure bending has been derived by Gauthier and Jahsman [1]. Timoshenko

and Goodier [75] showed that in three-dimensional classical elasticity, a plate subject to

edge moments Mz acting per unit length will in general be deformed into an anticlastic

shape. When transverse load is applied, the bending deformation occurs not only in the

longitudinal direction, but also in the transverse direction, due to the Poisson’s effect.

This is defined as an anticlastic deformation.

Figure 3.11: Bending of a plate

In the work of Gauthier and Jahsman the plate bending problem of length L, height h

and thickness b, shown in Figure 3.11, is analysed by assuming lateral boundary conditions

which prevent anticlastic distortion, turning it into cylindrical plane-strain bending prob-

lem. In other words, the only admissible displacements are ux(x, y) (denoted as u(x, y)

for the present 2D analysis) and uy(x, y) (denoted as v(x, y) for the present 2D analysis)

and the only admissible microrotation is ϕz(x, y) (denoted as ϕ(x, y) for the present 2D

analysis). Furthermore, Gauthier and Jahsman imposed the requirement that the stresses

and couple stresses are functions of y only, leading to a constant stress distribution in the

x direction, and a linearly varying distribution in the y direction. Thus, the non-vanishing

stresses are σxx, σzz, µzx and µxz.

We analyse a specimen of length L, thickness b and height h placed in the xy plane with

x as its axis of centroids and assume an applied loading resulting in an in-plane bending

moment M acting on the sides of the specimen orthogonal to the x-axis, as shown in

Figure 3.12. While in the classical elasticity the only way to subject the specimen to
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pure bending is via a linearly varying normal surface traction psx = 2y
h
p0, Gauthier and

Jahsman have shown that in the micropolar continuum the state of pure bending requires

both, such a traction and a constant surface moment msz acting on the same sides of the

specimen, i.e. M = b
´ h

2

−h
2

(y psx +msz)dy. Moreover, in order to produce pure bending of

the specimen they have to be applied in a unique proportion given as

msz

p0

=
1

h

(λ+ 2µ)(β + γ)

2µ(λ+ µ)
≡ h

6
(1− n)δ, (3.38)

with Poisson’s coefficient n and δ = 24(lb/h)2. Obviously, for a material with vanishing

characteristic length (lb → 0) the state of pure bending may not be achieved if the

surface moment loading is present, while for a general micropolar material such a state

is only possible when msz and p0 are given in the proportion defined above resulting in

M = p0Wz +mszA with A = bh and Wz = bh2/6. As a result,

p0 = − 1

1 + (1− n)δ

M

Wz

, msz =
(1− n)δ

1 + (1− n)δ

M

A
, (3.39)

the only non-vanishing stress components are

σxx = − 1

1 + (1− n)δ

M

Wz

2y

h
, µzx =

(1− n)δ

1 + (1− n)δ

M

A
, (3.40)

and, for the specimen fixed at the origin of the co-ordinate system, the displacement and

rotation fields are

ϕ =
1

1 + (1− n)δ

Mx

bD
, u = − 1

1 + (1− n)δ

Mxy

bD
, (3.41)

v =
1

2

1

1 + (1− n)δ

M

bD

(
x2 +

n

1− n
y2

)
, (3.42)

where D = Eh3

12(1−n2)
is the flexural rigidity. This problem does not induce any non-

symmetry in the stress tensor field, i.e. the solution does not depend on the coupling

number N (and therefore also on the material parameter ν). For lb → 0, the classical

solution is approached in all fields.

The numerical modelling of this problem is often misinterpreted in the literature,

where authors often apply the external loading using only one of the surface tractions

(e.g. [49], [39]) and compare the obtained numerical results against the analytical pure-

bending solution, even though such loading cannot yield a pure bending state. If the

precisely defined external loading proportion is not respected (equation (3.38), by refining

the finite element mesh we converge to another, significantly different solution.

The solution demonstrates that all fields are obtained from their respective values in

classical elasticity as multiplied by the factor 1
1+(1−n)δ

, i.e. bending stiffness in micropolar

elasticity increases with an increase in the material characteristic length lb. In engineering
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terms, bending resistance is not anymore proportional to the height of the specimen

squared and we say that the micropolar elasticity exhibits the so-called size-effect with

the solution increasingly departing from the classical solution when the characteristic

length reaches the order of magnitude of a representative dimension of the specimen.

Figure 3.12: Cantilever beam subject to pure bending

The problem described (see Figure 3.12) is analysed using quadrilateral and trian-

gular elements of different order, using both the proposed linked interpolation and the

Lagrangian interpolation. The problem is solved while varying the value of the characteris-

tic length lb =
1

2

√
β + γ

G
, lb ∈ [0.1, 1.8] to capture the size-effect. The resultant bending

moment M = 20 Nm is applied through a linearly varying surface loading and a con-

stant surface moment as described above and summarised in Table 3.8. For the problem

analysed, the analytical values of the external loading as a function of the characteristic

length lb are presented in Figure 3.13, where we can see that by increasing the charac-

teristic length lb, the contribution of p0 in the external moment rapidly decreases, while

the contribution of msz increases. In other words, when lb → ∞ the external moment is

taken over by the distributed surface moment only, i.e. p0 = 0 N
m2 , msz = 10 Nm

m2 , while

for lb → 0 it is taken over by the linearly varying surface moment only, i.e. p0 = 30 N
m2 ,

msz = 0 Nm
m2 .
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Figure 3.13: Distributed external loading as a function of the characteristic length lb

The distributed loading is applied through corresponding concentrated nodal forces

and moments obtained by integration as defined in equation (3.5).

Table 3.8: Analytical values of the external loadings p0 and msz as defined in (3.39) for
different values of the characteristic length lb and fixed values of the Poisson’s coefficient

and height of the cantilever, together giving the total external moment M = 20 Nm

lb/h lb β + γ p0 msz

0.05 0.1 24.0 28.708 133 971 291 860 0.430 622 009 569 378

0.15 0.3 216.0 21.352 313 167 259 780 2.882 562 277 580 070

0.30 0.6 864.0 11.450 381 679 389 320 6.183 206 106 870 228

0.60 1.2 3 456.0 4.010 695 187 165 778 8.663 101 604 278 070

0.90 1.8 7 776.0 1.925 545 571 245 185 9.358 151 476 251 610

The length of the cantilever is taken as L = 10 m, the height is h = 2 m and the

engineering material parameters are E = 1500 N/m2 and n = 0.25 which give the Lamé

constants µ = 600 N/m2 and λ = 600 N/m2. The material parameter ν = 200 N/m2

depends on the value of the coupling number, which is, in this example, chosen to be equal

to N = 0.5, but in this example can have an arbitrary value, as discussed above. Along

the left-hand edge of the cantilever all the horizontal displacements and microrotations

are restrained. The vertical displacement at the left-hand edge is restrained only at the

cantilever axis in order to preserve the symmetry of the system. Gauthier’s and Jahsman’s

analytical solution is derived by assuming that the boundary value problem is symmetric,

which has to be respected in order to obtain the analytical solution. Furthermore, because

of the existence of external moment loads msz which have to be taken over as reactions

along the clamped part, all microrotations along the left-hand edge have to be restrained.
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Q4

(a) Q4 elements

Q9

(b) Q9 elements

Q16

(c) Q16 elements

Figure 3.14: Quadrilateral finite element mesh, loading and boundary conditions

T3

(a) T3 elements

T6

(b) T6 elements

T10

(c) T10 elements

Figure 3.15: Triangular finite element mesh, loading and boundary conditions

The problem is solved using a mesh of two quadrilateral or four triangular elements

of different order shown in Figures 3.14 and 3.15. The left-hand side nodes in the higher-

order elements are restrained in the same way as the corner nodes. The results for the

vertical displacement and microrotation v and ϕ at the bottom right-hand node and the

stress σxx in the Gauss point nearest to this node obtained by the quadrilateral elements

Q4 are compared to the analytical solution in Table 3.9 and Figure 3.16, while the same

results obtained by the triangular elements T3 are shown in Table 3.10 and Figure 3.19.
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Table 3.9: Results obtained using two quadrilateral elements (Q4), 3x3 integration points,
GP = (8.887298, -0.887298), A – Analytical solution, N – Numerical solution

Element lb/h
A N

Error [%]
A N

Error [%]
A N

Error [%]
v v ϕ ϕ σxx,GP σxx,GP

Q4
0.05 0.90012

0.06892 92.3
0.17943

0.01269 92.9
25.47267

2.22127 91.3

Q4LI(PG) 0.87402 2.9 0.17426 2.9 26.08884 2.4

Q4
0.15 0.66948

0.06740 89.9
0.13345

0.01296 90.3
18.94586

2.08130 89.0

Q4LI(PG) 0.65566 2.1 0.13071 2.1 19.56450 3.2

Q4
0.30 0.35902

0.06203 82.7
0.07157

0.01261 82.4
10.15990

1.88150 81.5

Q4LI(PG) 0.35518 1.1 0.07082 1.0 10.59720 4.1

Q4
0.60 0.12575

0.04624 63.2
0.02507

0.00978 70.0
3.55870

1.29741 65.5

Q4LI(PG) 0.12527 0.4 0.02498 0.4 3.73716 4.8

Q4
0.90 0.06037

0.03234 46.4
0.01204

0.00691 42.6
1.70853

0.89668 47.5

Q4LI(PG) 0.06025 0.2 0.01202 0.2 1.79747 4.9
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 3.16: Cantilever beam subject to pure bending - Q4 elements

From Table 3.9 and Figure 3.16 we can see that Q4LI(PG) significantly improves the

results of the conventional Lagrange Q4 element, in particular for the problems with ex-

isiting, but less pronounced, micropolar effect. More precisely, for the smallest micropolar

effects (i.e. lb/h = 0.05) the error produced by the standard Q4 element is in average

92.2 %, while the error produced by the newly presented element Q4LI(PG) is in average

2.7%. For the largest micropolar effects (i.e. lb/h = 0.90) the error produced by the stan-

dard Q4 element is in average 45.5 %, while the error produced by the newly presented

element Q4LI(PG) is in average 1.8%, comparing against the analytical solution. In other

words, the element Q4LI(PG) predicts the analytical solution significantly more accurate

than the standard Q4 element. Furthermore, we want to point out that this improvement

is accomplished without introducing additional (internal) nodes and degrees of freedom.

Since the solution of Gauthier’s and Jahsman’s pure bending problem is describable by

a quadratic polynomial, the use of the conventional quadrilateral Lagrangian finite ele-

ments of order 2 is sufficient to obtain the analytical solution. Consequently, as expected

the quadrilateral Petrov-Galerkin linked interpolation finite elements of higher-order also

reproduce the analytical solution to the level of computer accuracy. This is shown in

Figures 3.17 and 3.18.
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 3.17: Cantilever beam subject to pure bending - Q9 elements
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 3.18: Cantilever beam subject to pure bending - Q16 elements

The improvement due to the linked interpolation in low-order triangulars is also present

but it is far less significant than in the low-order quadrilaterals. More precisely, for the

smallest micropolar effects (i.e. lb/h = 0.05) the error produced by the standard T3

element is in average 97.2 %, while the error produced by the newly presented element

T3LI(PG) is just around 8% smaller, i.e. 89.5% in average . By increasing the micropolar

effects, the produced error decreases. For the largest micropolar effects (i.e. lb/h = 0.90)

the standard T3 element produces in average an error of 68.9 %, while the error produced

by the newly presented element T3LI(PG) is half that value, i.e. 35.4% in average,

comparing against the analytical solution. The reason why a significant enhancement

as observed in the quadrilateral element in not achieved could lay in the strong locking

character of the T3 element type, which is already highlighted in the classical [67] and

micropolar [49] finite element analysis. Nevertheless, this type of element entails relatively

low computational effort and is suitable in specific applications (e.g. error estimates in

re-meshing) which is the reason why it should not be neglected. Moreover, this small

improvement due to the linked interpolation could in such cases be beneficial.
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Table 3.10: Results obtained using four triangular elements (T3), 7 integration points, GP=(5.29858, -0.9402841),
A – Analytical solution, N – Numerical solution

Element lb/h
A N

Error [%]
A N

Error [%]
A N

Error [%]
v v ϕ ϕ σxx,GP σxx,GP

T3
0.05 0.90012

0.02359 97.4
0.17943

0.00542 97.0
26.9938

0.7583 97.2

T3LI(PG) 0.07463 91.7 0.01737 90.3 3.6797 86.4

T3
0.15 0.66948

0.02518 96.2
0.13345

0.00586 95.6
20.0772

0.7166 96.4

T3LI(PG) 0.08089 87.9 0.01765 86.8 2.8406 85.9

T3
0.30 0.35902

0.02645 92.6
0.07157

0.00650 90.9
10.7666

0.6447 94.0

T3LI(PG) 0.08296 76.9 0.01807 74.8 2.5249 76.5

T3
0.60 0.12575

0.02367 81.2
0.02507

0.00604 75.9
3.7712

0.5156 86.3

T3LI(PG) 0.05967 52.5 0.01307 47.9 1.7067 54.7

T3
0.90 0.06037

0.01891 68.7
0.01204

0.00487 60.0
1.8106

0.3993 77.9

T3LI(PG) 0.03844 36.3 0.00844 29.9 1.0842 40.1
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 3.19: Cantilever beam subject to pure bending - T3 elements

As discussed before, the higher-order triangulars with both the Lagrangian interpo-

lation as well as those with the Petrov-Galerkin linked interpolation again provide the

analytical result, as expected, which is shown in Figures 3.20 and 3.21. However, when

the Petrov-Galerkin interpolation in six-node triangulars is switched off (note that in

these elements the Petrov-Galerkin interpolation is not necessary for convergence), the

results deteriorate by at most 0.025% (for lb/h = 0.05), the errors reducing rapidly as

lb/h increases and falling to below 0.003% for lb/h = 0.30. The results are shown in Table

3.11.
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Table 3.11: Results obtained using four triangular elements with six nodes (T6), 7
integration points, boundary conditions and loading as in Figure 3.15b, GP

(5.29858,-0.9402841), A = Analytical, N = Numerical

Element lb/h
A N A N A N

v v ϕ ϕ σxx,GP σxx,GP

T6

0.1 0.900120

0.90012

0.179426

0.17943

26.9938

26.9938

T6LI 0.90066 0.17986 27.0008

T6LI(PG) 0.90012 0.17943 26.9938

T6

0.3 0.669484

0.66948

0.133452

0.13345

20.0772

20.0772

T6LI 0.66957 0.13350 20.0784

T6LI(PG) 0.66948 0.13345 20.0772

T6

0.6 0.359017

0.35902

0.0715649

0.071565

10.7666

10.7666

T6LI 0.35903 0.071572 10.7669

T6LI(PG) 0.35902 0.071565 10.7666

T6

1.2 0.125752

0.12575

0.0250668

0.025067

3.77119

3.81865

T6LI 0.12575 0.025067 3.77124

T6LI(PG) 0.12575 0.025067 3.81865

T6

1.8 0.0603739

0.060374

0.0120347

0.012035

1.81056

1.81056

T6LI 0.060374 0.012035 1.81057

T6LI(PG) 0.060374 0.012035 1.81056
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 3.20: Cantilever beam subject to pure bending - T6 elements
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(a) End node vertical displacements (b) End node microrotation

(c) Stresses in Gauss point

Figure 3.21: Cantilever beam subject to pure bending - T10 elements

Next we analyse h-convergence of the first-order elements with Lagrange and linked

interpolation by modelling the same problem shown in Figure 3.12 for low lb/h = 0.05

and high lb/h = 0.90 micropolar effects. We perform the analysis on a number of meshes

with equal number of uniform elements per length and height of the specimen and show

the results in Table 3.12. We can see that Q4LI(PG) has a faster convergence rate than

the Q4 element, but both elements converge to the exact solution. Again the comparative

advantage of the linked-interpolation elements is more obvious for the lower value of lb/h.
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Table 3.12: h-convergence of first order quadrilateral elements for lb/h = 0.05 and
lb/h = 0.9, 3× 3 integration points used

Element Mesh size
lb/h = 0.05 lb/h = 0.9

v ϕ v ϕ

Q4
2×2

0.22336 0.04233 0.04976 0.01010

Q4LI(PG) 0.87402 0.17426 0.06024 0.01201

Q4
4×4

0.51163 0.09735 0.05730 0.01148

Q4LI(PG) 0.89340 0.17803 0.06034 0.01203

Q4
16×16

0.85921 0.16939 0.06017 0.01200

Q4LI(PG) 0.89970 0.17933 0.06037 0.01203

Q4
32×32

0.88951 0.17666 0.06032 0.01203

Q4LI(PG) 0.90001 0.17940 0.06037 0.01204

Q4
64×64

0.89744 0.17871 0.06036 0.01203

Q4LI(PG) 0.90009 0.17942 0.06037 0.01204

Q4
128×128

0.89945 0.17924 0.06037 0.01203

Q4LI(PG) 0.90011 0.17942 0.06037 0.01204

Q4
256×256

0.89995 0.17938 0.06037 0.01204

Q4LI(PG) 0.90012 0.17943 0.06037 0.01204

EXACT 0.90012 0.17943 0.06037 0.01204

As for the quadrilaterals, the h-refinement is also performed for the triangular elements

of first order with Lagrange and linked interpolation. Even though the contribution of

linked interpolation is small, from Table 3.13 we can see that it contributes to faster

convergence rate.
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Table 3.13: h-convergence of first order triangular elements for lb/h = 0.05 and
lb/h = 0.9, 7 integration points used

Element Mesh size
lb/h = 0.05 lb/h = 0.9

v ϕ v ϕ

T3
2×2×2

0.00882 0.01817 0.03656 0.00813

T3LI(PG) 0.20132 0.04242 0.04976 0.01040

T3
4×4×2

0.26903 0.05235 0.05162 0.01058

T3LI(PG) 0.48812 0.09885 0.05705 0.01151

T3
16×16×2

0.78363 0.15460 0.05974 0.01193

T3LI(PG) 0.85617 0.17057 0.06015 0.01200

T3
32×32×2

0.86781 0.17232 0.06022 0.01205

T3LI(PG) 0.88874 0.17709 0.06032 0.01203

T3
64×64×2

0.89181 0.17755 0.06033 0.01203

T3LI(PG) 0.89725 0.17883 0.06036 0.01203

T3
128×128×2

0.89803 0.17895 0.06036 0.01203

T3LI(PG) 0.89940 0.17927 0.06037 0.01203

T3
256×256×2

0.89960 0.17930 0.06037 0.01203

T3LI(PG) 0.89994 0.17939 0.06037 0.01204

EXACT 0.90012 0.17943 0.06037 0.01204

In order to test the quadrilateral elements shape sensitivity, the cantilever beam prob-

lem was solved by modeling a distorted mesh with four elements as shown in Figure 3.22.

The mesh distortion was accomplished using a distortion factor a and the behaviour of

quadrilateral elements was observed for the distortion factor values a = 1.0, a = 2.0 and

a = 3.0. The results for Q4LI(PG) are presented in Tables 3.15, 3.16 and 3.17.

Q4 DISORTED MESH

Figure 3.22: Irregular finite element mesh using a distortion factor a using quadrilateral
elements
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Table 3.14: Results obtained using four quadrilateral elements with four nodes (Q4)
with a distortion factor a=0.0, 3×3 integration points, GP = (9.43649, -0.887298), A –

Analytical solution, N – Numerical solution

A N A N A N

Element lb/h v v ϕ ϕ σxx,GP σxx,GP

Q4LI(PG) 0.05 0.90012 0.87101 0.17943 0.29032 25.47267 26.0915

Q4LI(PG) 0.15 0.66948 0.65504 0.13345 0.13068 18.94586 19.5663

Q4LI(PG) 0.30 0.35902 0.35484 0.07157 0.07079 10.15990 10.5874

Q4LI(PG) 0.60 0.12575 0.12522 0.02507 0.02497 3.55870 3.7300

Q4LI(PG) 0.90 0.06037 0.060243 0.01204 0.01201 1.70853 1.7935

Table 3.15: Results obtained using four quadrilateral elements with four nodes (Q4)
with a distortion factor a=1.0, 3×3 integration points, GP = (9.53649, -0.887298), A –

Analytical solution, N – Numerical solution

A N A N A N

Element lb/h v v ϕ ϕ σxx,GP σxx,GP

Q4LI(PG) 0.05 0.90012 0.71840 0.17943 0.14379 25.47267 20.9734

Q4LI(PG) 0.15 0.66948 0.61098 0.13345 0.12216 18.94586 18.1872

Q4LI(PG) 0.30 0.35902 0.34811 0.07157 0.06953 10.15990 10.3103

Q4LI(PG) 0.60 0.12575 0.12462 0.02507 0.02487 3.55870 3.69186

Q4LI(PG) 0.90 0.06037 0.06010 0.01204 0.01199 1.70853 1.77886

Table 3.16: Results obtained using four quadrilateral elements with four nodes (Q4)
with a distortion factor a=2.0, 3×3 integration points, GP = (9.63649, -0.887298), A –

Analytical solution, N – Numerical solution

A N A N A N

Element lb/h v v ϕ ϕ σxx,GP σxx,GP

Q4LI(PG) 0.05 0.90012 0.60929 0.17943 0.12360 25.47267 18.1202

Q4LI(PG) 0.15 0.66948 0.58865 0.13345 0.11824 18.94586 16.9814

Q4LI(PG) 0.30 0.35902 0.34897 0.07157 0.069718 10.15990 9.8081

Q4LI(PG) 0.60 0.12575 0.12513 0.02507 0.02495 3.55870 3.35576

Q4LI(PG) 0.90 0.06037 0.06027 0.01204 0.012013 1.70853 1.67486
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Table 3.17: Results obtained using four quadrilateral elements with four nodes (Q4)
with a distortion factor a=3.0, 3×3 integration points, GP = (9.73649, -0.887298), A –

Analytical solution, N – Numerical solution

A N A N A N

Element lb/h v v ϕ ϕ σxx,GP σxx,GP

Q4LI(PG) 0.05 0.90012 0.57816 0.17943 0.12048 25.47267 16.9026

Q4LI(PG) 0.15 0.66948 0.60406 0.13345 0.12184 18.94586 15.2828

Q4LI(PG) 0.30 0.35902 0.35799 0.07157 0.07131 10.15990 8.4683

Q4LI(PG) 0.60 0.12575 0.12671 0.02507 0.02515 3.55870 2.9403

Q4LI(PG) 0.90 0.06037 0.060791 0.01204 0.01206 1.70853 1.4063

In general, it is observed that the 1st order quadrilateral finite element Q4LI(PG) is

sensitive to mesh distortion. However, for low micropolar effects the distortion signifi-

cantly affects the obtained results, i.e. the accuracy of obtained results is reduced by

increasing the distortion factor. On the other hand, for high micropolar effects the ob-

tained results are still close to the analytical solution. Furthermore, the obtained results

for higher distortion factor are in some cases even more accurate than for lower distortion

factor (for example, compare the results for a=1.0 and a=2.0). However, by further in-

creasing the distortion factor (a=3.0) the obtained results diverge from the exact solution.

The higher order quadrilateral elements Q9LI(PG) and Q16LI(PG) are not sensitive to

mesh distortion, i.e. they exactly reproduce the analytical result, independently of the

value of the distortion factor.

3.5 Lagrangian interpolation and incompatible modes

in 3D

After a detailed analysis of 2D problems using membrane finite elements, here we

extend the finite element formulation to general 3D problems. After setting the weak

form in 3D as described in Section 3.1, the interpolation of the kinematic fields has to

be specified in order to obtain the numerical solution. In this section we again test two

different interpolations. Both interpolations are applied on an isoparametric trilinear

hexahedral finite element with eight nodes and six degrees of freedom per node (three

displacements ux, uy, uz and three microrotations ϕx, ϕy, ϕz) with the numbering con-

vention as shown in Figure 3.23. The first type is the conventional trilinear Lagrange

interpolation defined in the natural coordinate system, chosen for both displacement and

microrotation fields, and the corresponding finite element is called Hex8. The second

interpolation consists of the Lagrange interpolations for displacement and microrotation
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fields, but with the displacement interpolation additionally enriched by the so-called in-

compatible modes. The derived finite element is referred to as Hex8IM. In the framework

of the classical elasticity the incompatible displacement modes are first added to the

isoparametric elements in [72], [76],[77],[56]. The main benefit of incompatible modes in

the classical continuum framework is to avoid shear locking, as shown already in early

1970s [78]. In bending of isoparametric 4-node 2D or 8-node 3D finite elements, the ab-

sence of quadratic polynomials in the displacement field approximation predicts the shear

strain in pure bending incorrectly. This is called the shear-locking effect [67]. Even with

higher-order elements producing better results in pure-bending tests, the maximum possi-

ble reduction of computational cost is always a worthwhile goal. The proposed solution is

to enrich the displacement interpolation of the corresponding element with quadratic dis-

placement interpolation modes, requiring internal element degrees of freedom and leading

to incompatibility of the displacement field. When first introduced into 2D quadrilateral

isoparametric finite elements [78], the method was received with skepticism in the finite

element method research community, since the displacement compatibility between finite

elements was at that time considered to be absolutely mandatory [79]. The use of the

incompatible-mode method for low-order elements in both two- and three-dimensional

problems is nowadays common, leading to the most impressive performance not only in

bending, but also elsewhere, e.g. when modelling cracking [80, 56] and two-phase materi-

als [81]. A detailed exposition of 1D, 2D and 3D finite elements with incompatible modes

in classical elasticity is presented in [82]. In the framework of micropolar elasticity, the

idea of enhancing the displacement field of standard finite element is already recognised in

[38], where authors analyzed straight and curved beam problems subject to shear loading.

Only 2D problems have been analyzed in [38] and the numerical results have not always

converged to the reference analytical solution.

Figure 3.23: Hexahedral finite element with eight nodes
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For the element Hex8IM the real and virtual displacement field interpolations are

defined as

uh =
∑8

i=1Ni(ξ, η, ζ)uei +
∑3

i=1Mi(ξ, η, ζ)αei = Nud
e + Nenhα

e,

uh =
∑8

i=1Ni(ξ, η, ζ)uei +
∑3

i=1Mi(ξ, η, ζ)αei = Nud
e

+ Nenhα
e,

(3.43)

where

Ni(ξ, η, ζ) =
1

8
(1+ξaξ)(1+ηaη)(1+ζaζ), ξa = ±1, ηa = ±1, ζa = ±1, i = 1, .., 8, (3.44)

represent the Lagrange trilinear isoparametric shape functions [67], uei = 〈uxi uyi uzi〉T

is the vector of element nodal displacements at node i, and αei = 〈α1i α2i α3i〉T is

the vector of the element parameters for the incompatible shape functions chosen as:

M1 = 1− ξ2, M2 = 1− η2, and M3 = 1 − ζ2. From (3.43) we can see that the displace-

ment field interpolation consists of the conventional (compatible) part Nud
e and the

enhanced (incompatible) part Nenhα
e. In the compatible part, defining the complete dis-

placement field interpolation of the Hex8 element, the vector of element nodal degrees

of freedom is defined as de = 〈de1 de2 . . . de8〉, where dei = 〈uxi uyi uzi ϕxi ϕyi ϕzi〉T, i

being the node number, and the matrix of Lagrange interpolation functions is defined as

Nu = [N1 0 . . . N8 0], with explicit form of the sub-matrix of Lagrange interpolation

functions as

Ni =

Ni 0 0

0 Ni 0

0 0 Ni

 , (3.45)

and 0 as a 3 × 3 zero-matrix. Similarly, in the enhanced part with αe = 〈αe1 αe2 αe3〉T

as the element vector of additional degrees of freedom, the matrix of incompatible shape

functions is written as

Nenh =

M1 0 0 M2 0 0 M3 0 0

0 M1 0 0 M2 0 0 M3 0

0 0 M1 0 0 M2 0 0 M3

 . (3.46)

The virtual fields uei , α
e
i , d

e
and αe are defined analogously.

The real and virtual microrotation fields for both Hex8 and Hex8IM are interpolated

by using only the standard Lagrange interpolation:

ϕh =
8∑
i=1

Ni(ξ, η, ζ)ϕei = Nϕ de, ϕh =
8∑
i=1

Ni(ξ, η, ζ) ϕei = Nϕ d
e
, (3.47)

where ϕei = 〈ϕxi ϕyi ϕzi〉T is the vector of nodal microrotations at node i and

Nϕ = [0 N1. . . 0 N8].
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It is important to note that the reference configuration of the isoparametric ele-

ment is still defined only with the compatible shape functions, i.e. the mapping be-

tween the natural coordinate system and the global coordinate system is defined as

xh =
∑8

i=1Ni(ξ, η, ζ) xei where xei = 〈xi yi zi〉T represents the vector of element nodal

coordinates at node i.

By introducing the interpolation into the kinematic equations we obtain the vector of

interpolated micropolar strain field

εh = 〈ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33〉T =
8∑
i=1

Buid
e
i +

8∑
i=1

Qϕid
e
i +

3∑
i=1

Giα
e
i , (3.48)

and the vector of interpolated curvature field

κh = 〈κ11 κ12 κ13 κ21 κ22 κ23 κ31 κ32 κ33〉T =
8∑
i=1

Bϕid
e
i , (3.49)

where matrices Bui = [Bi 0] and Bϕi = [0 Bi] represent the matrices of global derivatives

of the compatible shape functions, matrix Qϕi = [0 Qi] is the matrix of compatible shape

functions defining the presence of microrotations in the definition of micropolar strains,

matrix Gi is the matrix of global derivatives of incompatible shape functions and 0 is a

9× 3 zero matrix, where the sub-matrices are defined as

Bi =



∂Ni
∂x

0 0
∂Ni
∂y

0 0
∂Ni
∂z

0 0

0 ∂Ni
∂x

0

0 ∂Ni
∂y

0

0 ∂Ni
∂z

0

0 0 ∂Ni
∂x

0 0 ∂Ni
∂y

0 0 ∂Ni
∂z


, Qi =



0 0 0

0 0 Ni

0 −Ni 0

0 0 −Ni

0 0 0

Ni 0 0

0 Ni 0

−Ni 0 0

0 0 0


, Gi =



∂Mi

∂x
0 0

∂Mi

∂y
0 0

∂Mi

∂z
0 0

0 ∂Mi

∂x
0

0 ∂Mi

∂y
0

0 ∂Mi

∂z
0

0 0 ∂Mi

∂x

0 0 ∂Mi

∂y

0 0 ∂Mi

∂z


. (3.50)

The global derivatives of compatible and incompatible shape functions are given by the

usual chain rule expressions using the Jacobian matrix J =
∂(x, y, z)

∂(ξ, η, ζ)
[67], i.e.


∂Ni
∂x
∂Ni
∂y
∂Ni
∂z

 =


∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z


︸ ︷︷ ︸

J−1


∂Ni
∂ξ
∂Ni
∂η
∂Ni
∂ζ

 ,


∂Mi

∂x
∂Mi

∂y
∂Mi

∂z

 =


∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z


︸ ︷︷ ︸

J−1


∂Mi

∂ξ
∂Mi

∂η
∂Mi

∂ζ

 . (3.51)
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Before proceeding to the derivation of the element stiffness matrix, we have to take into

account the finite element convergence criteria which states that any enhancement beyond

the standard definition of the strain field has to vanish for a state of constant strain. In

other words, any enhanced strain field must satisfy the stress orthogonality condition [56].

When enhancing the conventional interpolation functions, the condition which has to be

satisfied when performing a patch test of order n, is that all the enhancement of order

(n + 1) has to vanish. By imposing the requirement that the strain energy associated

with the incompatible modes under the state of constant stress has to vanish we obtain

the following equation [72]:

1

2
σT

ˆ
V e

Gi dVα
e = 0 ⇒

ˆ
V e

Gi dV = 0, (3.52)

where V e is the element volume and σ = 〈σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33〉T is the

element stress vector. This can be satisfied by adding a constant correction matrix Gci

to the matrix Gi, i.e. G̃i = Gi + Gci such that

ˆ
V e

G̃i dV =

ˆ
V e

(Gci + Gi) dV = 0, (3.53)

which, by the fact that Gci is constant, leads to the following modification of matrix Gi

[72]:

G̃i = Gi −
1

V e

ˆ
V e

Gi dV. (3.54)

By introducing the interpolation of the kinematic fields into the weak formulation we

obtain a system of two equations defined at the element level, i.e.

〈
d
eT

αe
T
〉([Ke FeT

Fe He

]{
de

αe

})
=
〈
d
eT

αe
T
〉{f e

0

}
, (3.55)

where the obtained matrices are equal to

Ke =

ˆ
V e

( (
Bu

T + Qϕ
T
)
T1 (Bu + Qϕ) + Bϕ

TT2Bϕ

)
dV, (3.56)

Fe =

ˆ
V e

G̃TT1 (Bu + Qϕ) dV, (3.57)

He =

ˆ
V e

G̃TT1G̃ dV, (3.58)

where Bu = [Bu1 Bu2 . . . Bu8 ]
T, Qϕ = [Qϕ1 Qϕ2 . . . Qϕ8 ],

Bϕ = [Bϕ1 Bϕ2 . . . Bϕ8 ]
T, G̃ = [G̃1 G̃2 G̃3]T, and T1 and T2 are 9×9 constitutive
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matrices defined as

T1 =



(λ+ 2µ) 0 0 0 λ 0 0 0 λ

0 (µ+ ν) 0 (µ− ν) 0 0 0 0 0

0 0 (µ+ ν) 0 0 0 (µ− ν) 0 0

0 (µ− ν) 0 (µ+ ν) 0 0 0 0 0

λ 0 0 0 (λ+ 2µ) 0 0 0 λ

0 0 0 0 0 (µ+ ν) 0 (µ− ν) 0

0 0 (µ− ν) 0 0 0 (µ+ ν) 0 0

0 0 0 0 0 (µ− ν) 0 (µ+ ν) 0

λ 0 0 0 λ 0 0 0 (λ+ 2µ)


, (3.59)

with a corresponding result for T2 in which α, β, γ replace λ, µ, ν. In order to eliminate

the presence of unknown incompatible-mode parameters αe, we have to perform the so-

called static condensation [77]. The static condensation is accomplished by first expressing

αe = −He−1
Fe de from equation (3.55)2 and then introducing αe into equation (3.55)1.

Consequently, we obtain the reduced form of the element stiffness matrix

K̃e = Ke − FeTHe−1

Fe. (3.60)

From this point on, we can proceed towards the standard finite element assembly account-

ing for all element contributions, i.e.

K d = f ⇒ d; K =
nelem
A
e=1

K̃e; f =
nelem
A
e=1

f e. (3.61)

Having the nodal displacement values obtained, we can recover the corresponding element

displacements de through the connectivity matrix d = Lede which allows to obtain the

incompatible mode parameters αe = −He−1
Fe de and recover the micropolar strains εh

in (3.48). Stresses σh in Gauss points are then obtained from the constitutive equations.

The curvatures κh are obtained in a conventional manner, directly from the element

displacements, as shown in equation (3.49) and again, using the constitutive equation, we

obtain the couple-stresses in Gauss points µh.

3.6 Numerical examples in 3D

In this section the performance of the conventional eight-node hexahedral micropo-

lar finite element Hex8 and the enhanced element with incompatible modes Hex8IM is

tested in four numerical examples. In the first example (Section 3.6.1), the finite-element

verification is performed through the patch test [67] on a regular mesh, which represents

a standard method for testing the finite element convergence. In the second example

(Section 3.6.2) a set of displacement patch tests for a 2D micropolar continuum proposed

in [36] and presented in subsection 3.4.2 are generalised to 3D and the elements are tested
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on an irregular mesh. The finite elements are also tested on two boundary value problems

that are important for the experimental determination of the micropolar material param-

eters, showing the size-effect phenomenon. In Section 3.6.3, the cylindrical bending of a

cantilever beam (also referred to as the higher-order patch test) is analysed and compared

to the analytical solution [1]. This pure bending example is already analysed using 2D

finite elements and presented in detail in Section 3.4.4. Finally, in the last numerical

example, presented in Section 3.6.4, an axisymmetric boundary-value problem consisting

of a solid cylinder subject to torsion in two different configurations (two sets of material

parameters) is analysed. In the second configuration, the obtained numerical results are

compared against the experimental results given in [5].

3.6.1 Force patch test in 3D

We perform the force patch test [67] on a cantilever beam subject to pure tension,

as shown in Figure 3.24, and check if for an arbitrary number of finite elements in the

mesh the exact solution for the state of constant stress is returned. The geometry of

the cantilever beam is chosen as L = 5 m, h = 2 m, b = 1 m. The free-end of the

cantilever beam is subjected to constant axial distributed loading py = 10 N/m2, leading

to a constant stress field. The constant distributed surface loading is applied through

corresponding concentrated nodal forces obtained by integration, which, for a single-

element mesh gives F =
1

4
pybh, as shown in Figure 3.24. At the left-hand end of the

cantilever all the displacements in the longitudinal direction are fixed, i.e. uy(x, 0, z) = 0,

while uz(x, 0, 0) = 0, and ux(0, 0, 0) = 0 for x ∈ [0, b], z ∈ [0, h]. The patch test is

performed on two regular meshes by equally increasing the number of uniform elements in

the x, y and z direction for the chosen material parameters µ = 1000 N/mm2, λ = 1000

N/mm2, ν = 500 N/mm2, α = 20 N, β = 20 N and γ = 20 N, where the boundary

conditions and external loading are correspondingly defined.

Figure 3.24: Cantilever beam subject to constant distributed axial load

It is observed that, even without the matrix modification defined in equation (3.54),

for a regular mesh the micropolar trilinear hexahedral element with incompatible modes
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reproduces the analytical results to the highest computer accuracy, which ensures that

the element will converge to the exact solution when refining the mesh.

3.6.2 Generalized 3D displacement patch tests for micropolar

continuum

As mentioned before, according to Providas and Kattis [36] the patch test for mi-

cropolar finite elements should consist of a set of three separate tests. In this section,

the tests given in [36] and presented in Section 3.4.2 for 2D finite elements are gener-

alized to 3D and performed on a cuboid domain of length L = 0.24, height h = 0.12,

width b = 0.06 and internal nodes with the following co-ordinates: 1 = (0.04, 0.04, 0.02),

2 = (0.04, 0.18, 0.03), 3 = (0.02, 0.18, 0.03), 4 = (0.02, 0.04, 0.02), 5 = (0.04, 0.08, 0.08),

6 = (0.04, 0.16, 0.08), 7 = (0.02, 0.16, 0.08) and 8 = (0.02, 0.08, 0.08). The domain is dis-

cretized with 7 arbitrarily distorted hexahedral finite-elements as shown in Figure 3.25.

It is important to note that the generalization of Providas’ and Kattis’ tests to 3D is

not unique and, in this thesis one possible generalization of it is presented. The material

parameters used are the same as defined in the 3D force patch test.

x

y

z

1
2

3
4

7
6

8
5
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h
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Figure 3.25: Finite element mesh for the displacement patch test

The patch tests are performed as in the 2D analysis, i.e. the displacements and

microrotations are imposed on the external nodes, while the volume loading (if any)

is imposed in the interior of the domain. Again, the element passes a patch test if the

internal nodes are capable of reproducing the analytical solution imposed by the boundary

conditions.

The first test is the standard patch test of the finite elements in the classical continuum

theory, whereby imposing linearly varying displacement and constant microrotation fields

via appropriate boundary conditions without any volume and surface loading we obtain

the state of constant symmetric stress and strain. The kinematic fields of the generalised
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first test are defined as follows:

ux = 10−3(x+ 0.5y + z), uy = 10−3(x+ y + 0.5z),

uz = 10−3(0.5x+ y + z), ϕx = ϕy = ϕz = 0.25 · 10−3,
(3.62)

leading to the following theoretical solution:

σxx = σyy = σzz = 5.0, σxy = σyx = σyz = σzy = σxz = σzx = 1.5,

εxx = εyy = εzz = 10−3, εxy = εyx = εyz = εzy = εxz = εzx = 0.75 · 10−3,
(3.63)

with all the couple-stress and curvature components equal to zero.

The second test describes the state of constant non-symmetric shear stresses and

strains, for which a constant body moment is needed in order to preserve equilibrium. The

kinematic fields and body moments of the generalised second test are defined as follows:

ux = 10−3(x+ 0.5y + z), uy = 10−3(x+ y + 0.5z),

uz = 10−3(0.5x+ y + z), ϕx = ϕy = ϕz = 0.75 · 10−3,

mvx = mvy = mvz = 1.0,

(3.64)

giving the following theoretical solution

σxx = σyy = σzz = 5.0, σxz = σyx = σzy = 1.0,

σzx = σxy = σyz = 2.0, εxx = εyy = εzz = 10−3,

εxz = εyx = εzy = 0.25 · 10−3, εzx = εxy = εyz = 1.25 · 10−3,

(3.65)

with all the couple-stress and curvature components again equal to zero. The third test

describes the state of constant curvature, whereby imposing linearly varying displacement,

microrotation and body-moment fields as well as a constant body-force field we obtain

linearly varying stresses and constant couple-stresses. The input of the generalised third

test is defined as:

ux = 10−3(x+ 0.5y + z), uy = 10−3(x+ y + 0.5z),

uz = 10−3(0.5x+ y + z), ϕx = ϕy = ϕz = 10−3(0.25 + (x− y − z)),

pvx = 0, pvy = 2, pvz = −2, mvx = mvy = mvz = 2(x− y − z).

(3.66)
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giving the following theoretical solution

σxx = σyy = σzz = 5.0, σxz = σyx = σzy = 1.5− (x− y − z),

σzx = σxy = σyz = 1.5 + (x− y − z), εxx = εyy = εzz = 10−3,

εxz = εyx = εzy = 10−3(0.75− (x− y − z)),

εzx = εxy = εyz = 10−3(0.75 + (x− y − z)),

µxx = 0.02, µyy = µzz = −0.06, µxy = µxz = µyz = µzy = −0.04,

µyx = µzx = 0.04, κxx = κyx = κzx = 10−3,

κyy = κzz = κxy = κxz = κyz = κzy = −10−3.

(3.67)

Table 3.18: Results for Patch test 3 [36] using the Hex8IM element

ux · 10−4 uy · 10−4 uz · 10−4 ϕx · 10−4 σxx µxx µxy

0.604 0.699 0.698 2.102 5.013 0.019 -0.039

Exact 0.600 0.700 0.700 2.100 5.000 0.020 -0.040

All three tests are first performed using the conventional Hex8 finite element and the

obtained results correspond to the analytical solution to within the computer accuracy

(10−16). When analysing the first two tests using the enhanced finite element Hex8IM it

is observed that, for a distorted mesh analysed here, the matrix modification as presented

in (3.54) is necessary for the element to pass the patch tests. When applying the matrix

modification, both tests are satisfied to within the computer accuracy. However, the third

test which we treat as higher-order patch test is not satisfied either way and the obtained

results are presented in Table 3.18. Even though the third patch test is not satisfied, we

consider that Hex8IM satisfies the convergence criteria since, as argued above, the finite

element is able to reproduce exactly any state of constant stress.

3.6.3 A cantilever beam subject to pure bending in 3D – higher-

order patch test

In order to test the accuracy of the hexahedral element enhanced with incompatible

modes, a cantilever beam shown in Figure 3.26 submitted to cylindrical bending is anal-

ysed. The chosen geometry is the same as in the 2D numerical analysis of this problem

presented in Section 3.4.4, i.e. L = 10 m, h = 2 m and b = 1 m. In order to model

correctly this problem, we follow the steps described in Section 3.4.4. Again, the problem

is solved while varying the value of the characteristic length lb ∈ [0.0, 1.8] to capture the

size-effect. The resultant bending moment M = 20 Nm is applied through a linearly

varying surface loading psx and a constant surface moment loading msz in the proportion

defined in equation (3.38), which has to be strictly respected in order to obtain a pure
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bending state. The analytical values of the external loadings for different lb are presented

in Table 3.8. The distributed loading is applied through corresponding concentrated nodal

forces and moments obtained by integration as defined by (3.1)-(3.4).

Figure 3.26: Cantilever beam subject to pure bending in 3D

The engineering material parameters are taken the same as defined in Section 3.4.4, i.e.

E = 1500 N/m2 and n = 0.25 which give the Lamé constants µ = 600 N/m2 and

λ = 600 N/m2. The parameter ν is chosen to be equal to ν = 200 N/m2, corresponding

to N = 0.5, but in this example it can have an arbitrary value, as argued before. The

remaining engineering parameters which exist only in the 3D analysis are chosen as ψ = 0

and lt = 0.1, but, since they do not affect the solution, they can also have arbitrary

values. Along the left-hand edge of the specimen all the horizontal displacements and

microrotations are restrained, i.e. ux(0, y, z) = ϕx(0, y, z) = ϕy(0, y, z) = ϕz(0, y, z) = 0,

for y ∈ [0, h] and z ∈ [0, b]. The vertical displacement at the left-hand edge is restrained

only at the cantilever axis, i.e. uy(0,
h
2
, z) = 0 for z ∈ [0, b]. Furthermore, the cylindrical

bending of the specimen is accomplished by additionally restraining the displacements in

the z direction along the whole cantilever, i.e. uz(x, y, z) = 0 for x ∈ [0, L], y ∈ [0, h] and

z ∈ [0, b].

The problem is solved using a mesh of two hexahedral elements as shown in Figure 3.26.

The results for the vertical displacement and microrotation uy and ϕz at node P and

the stress σxx at the Gauss point with coordinates GP = (7.88675, 0.211325, 0.788675)

obtained by Hex8 and Hex8IM are compared to the analytical solution and shown in

Table 3.19 and Figure 3.27.
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Table 3.19: Results obtained using two hexahedral elements with eight nodes (Hex8 and
Hex8IM), 2× 2× 2 integration points, A = Analytical, N = Numerical

Element lb β + γ
A N A N A N

uy uy ϕz ϕz σxx,GP σxx,GP

Hex8
0.0 0.0 0.94063

0.06910
0.18750

0.01260
23.6603

1.9684

Hex8IM 0.94063 0.18750 23.6603

Hex8
0.1 24.0 0.90012

0.06892
0.17943

0.01269
22.6414

1.9503

Hex8IM 0.90012 0.17943 22.6414

Hex8
0.3 216.0 0.66948

0.06740
0.13345

0.01296
21.3523

1.8345

Hex8IM 0.66948 0.13345 21.3523

Hex8
0.6 864.0 0.35902

0.06203
0.07157

0.01261
11.4504

1.5997

Hex8IM 0.35902 0.07157 11.4504

Hex8
1.2 3456.0 0.12575

0.04624
0.02507

0.00977
3.1631

1.1436

Hex8IM 0.12575 0.02507 3.1631

Hex8
1.8 7776.0 0.06037

0.03234
0.01204

0.00691
1.5186

0.7904

Hex8IM 0.06037 0.01204 1.5186
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(a) Normalised end-node vertical displacements (b) Normalised end-node microrotation

(c) Normalised stresses in Gauss point

Figure 3.27: Cantilever beam subject to pure bending - results for Hex8 and Hex8IM

From the obtained results we can see that Hex8IM reproduces the analytical solution to

within the computer accuracy, while the conventional element with Lagrange interpolation

Hex8 shows very poor results, especially for smaller micropolar effects. The improvement

due to the incompatible modes is highly significant. Even with a very coarse mesh, the

analytical solution of this higher-order patch test is precisely reproduced.

3.6.4 Micropolar solid cylinder under torsional load

An axisymmetric solid micropolar cylinder subject to pure torsion shown in Figure

3.28 is analyzed in this example. Gauthier and Jahsman derived the analytical solution

for a cylindrical specimen of height c and cross-section radius a in the cylindrical coordi-

nate system (r, θ, z) subject to torsional load [1]. The stresses and couple stresses are

axisymmetric, and independent of z. Furthermore, all non-vanishing variables are inde-

pendent of the angle θ. By further imposing a traction-free surface for r = a, prescribing

the appropriate resultant torque T on end surfaces z = 0 and z = c and taking into

account the compatibility conditions, the analytical solution for stresses, displacements

and microrotations are obtained.
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Figure 3.28: Solid cylinder in torsion

The first comprehensive numerical study of the problem is presented in [37], where

linear beam finite elements are tested for a range of micropolar material parameters

and the obtained results are compared to the analytical solution. Furthermore, in [49]

three-dimensional non-linear finite elements are developed and their performance is tested

by modeling this linear-elastic problem. A good agreement between the numerical and

analytical results is shown in both references. However, as in the pure-bending case from

Section 3.6.3, Gauthier and Jahsman have shown that in the micropolar theory the state

of axisymmetric torsion of a circular cylinder can be achieved only by applying both

a normal surface traction psθ and a surface moment traction msz. In other words, to

correctly model the problem in 3D, the external torque T should be applied as

ˆ
A

(r psθ +msz) dA = T, (3.68)

where A = r2π is the cylinder cross-section area, r is the variable in the radial direction,

psθ is the tangential surface loading and msz is the moment surface loading, as presented

in [1]. The Neumann boundary condition is then 2π
´ a

0
(r2 σθz + r µzz) dr = T where a

represents the cross-section radius and σθz and µzz represent the stress and couple-stress

components, respectively, with the first index denoting the direction and the second index
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denoting the surface normal. According to the analytical solution, both σθz and µzz are

described by the modified Bessel functions of the first kind In(r) [83] depending on r and

multiplied by constants of integration C1 and C9, as follows:

σθz = psθ = µ C1 r + 2νC9I1(pr), µzz = msz = α p C9 I0(pr) + 2βC1, (3.69)

where

p =

√
4ν

α + 2β
, C9 =

T

2πa2

[
(
µa2

4β
+ 1.5) (α + 2β) p I0(pa)− (

µa2

4β
+ 2)

2β

a
I1(pa)

]−1

and C1 = 2C9

(
α + 2β

2β
p I0(pa)− 1

a
I1(pa)

)
, I0 and I1 being the modified Bessel func-

tions of the first kind. In other words, the distribution of the external loading is di-

rectly dependent on material parameters. The remaining non-vanishing variables are

σzθ, µrr, µθθ, uθ, ϕr and ϕz, where the displacement and rotation fields are defined as

uθ = C1rz, ϕr = −C1r

2
+ C9I1(pr), ϕz = C1z, (3.70)

uθ being linear in r and z and ϕz linear in z as in the classical elasticity. Since uz vanishes,

no warping of surfaces is predicted.

In order to relate the classical and micropolar torsional problem, Gauthier and Jahs-

man introduce a parameter Ω which defines the ratio of the micropolar torsional rigidity to

the classical torsional rigidity J =
Gπa4

2
. The ratio Ω is given as a function of engineering

micropolar material parameters as:

Ω = 1 +
6

a2
l2t

1− 4
3
ψχ

1− ψχ
, where χ =

I1(pa)

p a I0(pa)
and p =

√
2ψN2

l2t (1−N2)
. (3.71)

It can be seen that for the limiting case lt → 0 the micropolar rigidity approaches the

classical-elasticity value, since the ratio Ω→ 1. On the other hand, for the limiting case

ψ → 0, the ratio of micropolar rigidity approaches its maximum value of Ω = 1 + 6(
lt
a

)2.

In general, as the characteristic length approaches the specimen radius, the micropolar

rigidity increases and it can be as many as seven times bigger than the classical rigidity.

In the first part of this analysis the problem is solved using both Hex8 and Hex8IM

elements and the finite elements are tested by comparing the numerical results against

the analytical solution. The radius of the cylinder is taken as a = 0.2 mm, its height is

c = 1 mm, and it is subjected to a resultant torque T = 1 Nmm. The chosen material

parameters are µ = 10 500 N/mm2, λ = 157 500 N/mm2, ν = 3 500 N/mm2, α = 0 N,

β = 105 N and γ = −105 N , which corresponds to the following engineering material

parameters E = 30 843.8 N/mm2, n = 0.46875, N = 0.5, lb = 0 mm, lt = 0.1 mm,
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ψ = 1.0. Since α = 0, the first term in (4.64)2 vanishes, i.e. msz becomes constant and

we obtain the external loading as shown in Figure 3.29.

(a) psθ for r ∈ [0, 1.0] (b) psθ for r ∈ [0, a]

(c) msz for r ∈ [0, a]

Figure 3.29: Distribution of the external loading

The surface traction is in general a non-linear function, as shown in Figure 3.29a. By

extracting an initial part of that diagram (the detail in Figure 3.29a), we can see that

as r gets smaller, the shape of psθ approaches a linear function, as blown up in Figure

3.29b. We can thus say that psθ is nearly linear for r ∈ [0, a] and the resultant torque

T is modelled as a linearly varying surface loading psθ where psθ(0, θ, c) = 0 N/mm2,

psθ(r, θ, c) = 43.93046972 N/mm2, θ ∈ [0, 2π], along with a constant distributed moment

surface loading msz = 3.636829403 Nmm/mm2 shown in Figure 3.29c.

For the problem analysed, the analytical curves of the external loading as a function of

the characteristic length lt for r = a are presented in Figure 3.30, where we can see that,

as in the pure bending example, by increasing the characteristic length lt, the contribution

of psθ in the external moment rapidly decreases, while the contribution of msz increases.

In other words, when lt →∞ the external moment is taken over by the distributed surface

moment only, i.e. psθ = 0 N
m2 , msz = 7.95775 Nm

m2 , while for lt → 0 it is taken over by the

linearly varying surface moment only, i.e. psθ0 = 79.5775 N
m2 , msz = 0 Nm

m2 .
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Figure 3.30: Distributed external loading as a function of the characteristic length lt

Along the bottom side of the cylinder (z = 0) all the displacements and microrotation

ϕz are restrained. The problem is solved for two different mesh densities, with 24 and 144

elements, as shown in Figures 3.31a and 3.31b, respectively.

(a) 24 elements (b) 144 elements (c) 1536 elements

Figure 3.31: Finite element mesh for the axisymmetric problem

The results obtained by Hex8 and Hex8IM for microrotation ϕz along the cylinder

axis z for r = a, and microrotation ϕr and displacement uθ at the upper edge (z = c)

along r are compared against the analytical solution, as shown in Figures 3.32, 3.33 and

3.34.
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(a) 24 elements (b) 144 elements

Figure 3.32: Distribution of ϕz along z - results for Hex8 and Hex8IM for different mesh
densities

(a) 24 elements (b) 144 elements

Figure 3.33: Distribution of ϕr along r - results for Hex8 and Hex8IM for different mesh
densities

(a) 24 elements (b) 144 elements

Figure 3.34: Distribution of uθ along r for z = c - results for Hex8 and Hex8IM for
different mesh densities

We can see that both the Lagrange element Hex8 and the enhanced element Hex8IM

follow the analytical solution, and the numerical results are in good agreement with the
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analytical solution even for a coarse mesh. The numerical analysis correctly predicts

the linear distribution of the axial microrotation component ϕz and the displacement

component uθ. The results for the radial microrotation component ϕr correctly follow

the analytical trend. Because of the presence of the characteristic length for torsion, the

rigidity of this micropolar cylinder is 2.19 times larger than expected classically. However,

the enhancement due to incompatible modes does not improve the convergence rate.

As in the cylindrical bending example from Section 3.6.3, it is important to note

that when the resultant moment T is modeled as a constant distributed moment surface

loading T =
´
A
mszdA, or a linearly varying surface loading T =

´
A
r psθdA only, an ax-

isymmetric torsion state is not obtained. Consequently, such a problem does not converge

to the analytical solution given in [1] but to another different solution. Such a problem is

analysed in [49].

In the second part of this numerical example the results of the numerical analysis are

compared with the experiments performed on a micropolar material. The first successful

attempt to experimentally validate all six micropolar material parameters is conducted by

Lakes [5] who has studied experimentally the size-effect phenomenon, which is analytically

predicted to occur in torsion and bending [1]. His study consists of a set of quasi-static

torsion and bending tests performed on circular cylinder specimens and dynamic tests

performed on rectangular bars made of low-density polymeric foam. A characteristic

dimension of the specimens is taken to be small enough for the size effect to be observable,

approaching the value of the material characteristic length (diameters 13 mm, 20 mm,

28 mm, 35 mm and 40 mm with the length-to-diameter ratio c/d = 5). The end-point

torsional rotation θ is measured for a given torque value and the resulting torsional rigidity

is computed from J =
T c

θ
. The results of

J

d2
against d2 obtained in this way in [5]

are reproduced as dots in Figure 3.35. Analytically, on the other hand, the micropolar

torsional rigidity follows from (3.70)3 as

J =
T

C1

= πa2

(
µa2

2β
+ 3

)(α
2

+ β
)
pa I0(pa)−

(
µa2

2β
+ 4

)
β I1(pa)(

1 +
α

2β

)
pa I0(pa)− I1(pa)

, (3.72)

with a = d
2

and p = 2
√

ν
α+2β

, i.e. it is a function of the micropolar material parameters

µ, ν , α, β and the cross-section radius a. Lakes has determined these material parameters

[5] by drawing the best-fit curve to the experimental results, plotted using a solid line

in Figure 3.35. The micropolar engineering parameters G, lt, N , and ψ can then be

obtained from equation (2.185). Lakes refers to this approach as the method of size

effects which makes use of the analytical solution [1] to describe the dependence of rigidity

upon size. For the case of the polymeric-foam specimens, the experimental data are

fitted well by G = 0.6 N/mm2, ψ = 1.5, lt = 3.8 mm and N = 0.3. The remaining
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engineering parameters are obtained from the tension and bending test and are equal to

n = 0.07 and lb = 5 mm. The corresponding continuum material parameters are µ = 0.6

N/mm2, λ = 0.0976744 N/mm2, ν = 0.0593407 N/mm2, α = −5.776 N, β = 8.664 N

and γ = 51.336 N. Let us note that here the restriction on positive definiteness of the

strain energy is not strictly satisfied since 3α + 2β = 0. The dashed line in Figure 3.35

represents the theoretical solution in the classical-elasticity theory,
J

d2
=

1

32
πGd2.
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Figure 3.35: Analytical, experimental and numerical representation of a size-effect
behaviour of a polymeric foam

In our numerical model proper external loading should be applied as argued earlier. For

the micropolar parameters given and a unit torque moment T = 1 Nmm, the distributed

surface loading is represented by a quasi-linearly varying surface loading psθ and, since

ψ 6= 0, a non-constant distributed surface moment loading msz. For the specimen with

d = 13 mm, this is shown in Figure 3.36.
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(a) psθ for r ∈ [0, 50.0] (b) psθ for r ∈ [0, a]

(c) msz for r ∈ [0, a]

Figure 3.36: Distribution of the external loading for the specimen with d = 13 mm

By analysing the definition of the resultant torque T from equation (3.68), we can

see from Figure 3.36 that for the specimen with diameter d = 13 mm the contribution

of the distributed surface load msz in the resultant unit torque moment is 25.15 % while

the contribution of psθ is 74.85 %. Furthermore, the contribution of the constant part

of the surface moment loading, having the value of msz = 0.001420949939 Nmm/mm2

is 18.86 % while the contribution of the non-linear part of the surface moment loading

is 6.28 %, all computed using the Wolfram Mathematica package. Thus, the applied

moment loading is simplified to a sum of the constant part of the moment surface loading

equal to msz = 0.001420949939 Nmm/mm2 and a radially linear distribution obtaining

the value of 0.001094166286 Nmm/mm2 for r = 0 and 0.0001634 Nmm/mm2 for r = a.

This distribution is shown in Figure 3.36c, represented by the straight line such that the

areas under the analytical result (curved line) and the approximated result (straight line)

are the same. Finally, the surface loading is applied as approximately linearly varying to

obtain the value psθ = 0.001745546194 N/mm2 for r = a. The external loading for the

remaining specimens is applied analogously, with the corresponding values obtained from

(4.64). For the remaining specimens, the contribution of the distributed surface load msz

in the resultant unit torque moment is decreasing by increasing the specimen diameter.
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The problem is solved using Hex8IM elements for a fine mesh of 1536 elements shown in

Figure 3.31c), and the obtained numerical results for uθ at point P (a, 0, c) for all specimens

are introduced into the definition of the rigidity J =
T a c

uθ
and plotted as diamonds in

Figure 3.35. Even with the applied external loading simplified as described, very good

agreement with the experiments conducted in [5] is achieved. Finally, in this example it

is observed that, according to the experiments shown in Figure 3.35, the rigidity of the

specimen with d = 13 mm is approximately 60% higher, while the rigidity of the specimen

with d = 20 mm is approximately 16.5% higher than predicted by the classical-elasticity

theory, which is now also numerically proven.
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Chapter 4

Non-linear micropolar continuum

model

The assumption of small or infinitesimal displacements and rotations in the linear

micropolar continuum theory significantly simplifies derivation of the balance equations

due to the fact that the difference between the undeformed and deformed configuration

can be neglected in the equilibrium equations. However, this assumption is not always

appropriate for a realistic description of the structural response. In general, we distinguish

between two forms of non-linearity: material non-linearity and geometric non-linearity.

In the specific case of an elastic material, the term material non-linearity implies that the

stress is no longer proportional to the strain, as in the linear elasticity. In our work we

focus explicitly on the geometric non-linearity where we do not restrict ourselves to small

displacements and small rotations as assumed in the linear regime, i.e. we observe a body

which, when deformed, exhibits large displacement and large rotations. Consequently, the

difference between the deformed and initial (undeformed) configurations in the equilibrium

equations cannot be neglected anymore, as assumed in the linear analysis. Thus, the

equilibrium equations are no longer represented in a unique manner, i.e. we are obliged

to choose a specific configuration to further work with. In that sense we can choose to

express all the unknown variables as functions of coordinates in the initial (undeformed)

configuration (in the literature also known as the Lagrangian formulation) or as functions

of coordinates in the deformed configuration (in the literature also known as the Eulerian

formulation) [56]. In solid mechanics the most commonly used formulation is Lagrangian,

since it allows to express the variables with respect to a known configuration. Another

challenge which arises in the non-linear analysis lies in the use of 3D finite rotations

which are non-additive and non-commutative and as such require a special mathematical

treatment, which is significantly more complex than that of displacements.

In this Chapter the mechanical problem of a non-linear micropolar continuum is anal-

ysed and the three sets of equations (equilibrium, kinematic and constitutive) with the

corresponding boundary conditions needed in order to describe the problem are derived.
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4.1 Orthonormal bases

The 3D Euclidean space E is a real vector space V with a basis defined by a set of three

linearly independent vectors. An orthonormal basis is a set of three vectors, here denoted

e1, e2 and e3 and collectively by {ei} such that ei · ej = δij, i, j = 1, 2, 3. [53]. Any point

P in E is determined by three coordinates (X1, X2, X3) and any vector v belonging to it

can be represented with its components along the base vectors as

v = v1e1 + v2e2 + v3e3, (4.1)

where v1, v2, v3 are the components of v relative to the given basis [53]. It is assumed

here that the orthonormal basis {ei} forms a right-handed triad of unit vectors, i.e. [53]

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2. (4.2)

4.1.1 Change of basis

We now consider another right-handed orthonormal basis {ti} oriented with respect

to {ei}, as shown in Figure 4.1.

Figure 4.1: Change of basis

As shown in (4.1), since {ei} is a basis, each ti (i = 1, 2, 3) can be expressed as a linear

combination of e1, e2 and e3, i.e. [53]

ti = Qipep, i, p = 1, 2, 3. (4.3)

By taking the dot product of (4.3) with ej, we obtain the coefficients Qij as

Qij = ti · ej. (4.4)

By recalling the definition of the vector scalar product [53]

a · b = |a| |b| cos^(a,b), (4.5)
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we see that the coefficients Qij represent the direction cosines of the vectors ti relative to

ej. Furthermore, all the direction cosines Qij can be written in a matrix form Q, which

represents the orientation matrix or the rotation matrix. Due to orthonormality and (4.3)

we obtain

δij = ti · tj = Qikek · tj = QikQjk, (4.6)

leading to the conclusion that

QT = Q−1. (4.7)

Any matrix satisfying (4.7) is said to be an orthogonal matrix, i.e. QTQ = QQT = I.

Furthermore, by taking the determinant of QQT we arrive at the following conclusion:

det(QQT) = detQdetQT = detI = (detQ)2 = 1, ⇒ det(Q) = ±1. (4.8)

Orthogonal matrices with det(Q) = +1 represent a pure rotation of the basis, while or-

thogonal matrices with det(Q) = −1 represent a reflection of the basis. In this thesis

we restrict our attention to the situations in which det(Q) = +1, which preserve the

right-handedness of the basis vectors [53]. Such matrices are referred to as proper or-

thogonal matrices. In general, the matrix Q can be understood as a rotation operator

which transforms linearly and isometrically (i.e. preserves the length and orientation)

an orthonormal basis of R3 to another orthonormal basis in the Euclidean space. In the

literature these matrices are also referred to as special orthogonal, and are classified to

belong to the so-called special orthogonal rotation group SO(3), being also o Lie group

and a subset of a larger matrix Lie group [84, 85]. A detailed exposition of this subject

can be found in [86].

4.2 Frames of reference

In order to describe phenomena qualitatively and quantitatively, a frame of reference

(location of an observer), which may be used as a basis for the description, is needed

[53]. A frame is determined by its orientation and its placement. In general, by choos-

ing different independent variables, different descriptions are attributed to the observed

object. However, in continuum mechanics the only two descriptions of practical use are

the reference (material) description, in which the independent variables are the position

of a material particle in a chosen referential state and time and the relative (spatial) de-

scription, in which the independent variables are the position of a material particle in a

current state and time.

Here we define a so-called material frame of reference by means of an associated base

{Ei} at a chosen position relative to the body, which allows us to precisely define the

position of a material point X within it. This is shown in Figure 4.2.
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Figure 4.2: The material frame of reference

Next we define a so-called spatial frame of reference by means of another base {ei}
at a chosen position in space, with respect to which we are able to precisely define the

position which the body takes when deformed, as shown in Figure 4.3.

Figure 4.3: The spatial frame of reference

In Figure 4.3 the yellow body represents the reference state, which is here taken as

the undeformed state, but can be taken as an arbitrary state of the body. The position

112



vectors x0, x together with the displacement vector u belong to this ambient space, which

is why we refer to them as spatial vectors. In contrast, the position vector X lives in a

different space, which we call the material space, and is thus called a material vector.

The relationship between spatial and material objects is defined by the so-called pull-

back/push-forward mapping [56] by means of an orthogonal transformation Q which

serves to define the relative orientation between the two respective domains (body and

ambient space). For example, an arbitrary spatial vector a is related to its material

counterpart A through

A = QTa ⇔ a = QA. (4.9)

Geometrically, the vector A is a rotated version of the vector a by QT.

The pull-back/push-forward mapping is an inevitable tool in order to derive the bal-

ance equations in the known configuration in either description. In the process of deriving

the balance equations it is important to keep in mind that the body and the space are

distinct vector spaces, even though it is usually assumed (as we will also do here) that the

material frame and spatial frame coincide. Nevertheless, it is useful to retain a notational

distinction between the objects belonging to the two different spaces. As a rule we will

use capital letters for the material objects and lower-case letters for the spatial objects.

4.3 On finite rotations

The two main features of the rotation group which have to be taken into account are:

1. Its elements (rotation matrices) are not commutative in general, i.e. Q1Q2 6= Q2Q1

where Q1, Q2 ∈ SO(3), i.e. changing the order of two successive rotations a different

result is obtained;

2. Its elements are not additive, i.e. Q1 + Q2 /∈ SO(3).

Consequently, the mathematical treatment of finite rotations in a numerical analysis is

significantly more complex than that of displacements.

As already mentioned, the finite rotations in 3D are represented by an orthogonal ten-

sor Q ∈ SO(3), i.e. Q−1 = QT, detQ = +1. However, difficulties of such a representation

arise due to the fact that SO(3) is not a linear space, but a non-linear differentiable man-

ifold. The non-linearity of the rotational manifold SO(3) turns out to be incompatible

with the standard additive interpolation techniques in the finite element method, which

is a technique designed to respect the properties of the linear vector space [85]. Thus,

the treatment of the 3D rotations becomes nontrivial primarily because of the nonlinear

character of the manifold to which they belong.
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4.3.1 Parametrization of finite rotation

In order to describe a three-dimensional finite rotation, a number of forms incorpo-

rating different parameters are developed. In general, they can be divided into two main

groups: the vector-like parametrizations (such as Euler-Rodrigues and Cayley-Rodrigues),

which are te most commonly used ones, and the non vector-like parametrization (such as

the Euler’s angles, quaternions ect.). The outline of different types of parametrizations

of rotations can be found in e.g. [87], [84], [88], [89].

4.3.1.1 Vectorial parametrization of finite rotation

For plane problems, the rotations are trivially defined. In a plane, the only information

needed is the magnitude (or angle) of rotation, i.e. rotations are represented as scalar

quantities, which means that they commute, i.e. ϑ1 + ϑ2 = ϑ2 + ϑ1. Consequently, in

plane problems, rotations are describable as a sequence of additive rotations. However,

in order to define a finite spatial rotation, two informations are needed: the magnitude

and direction (or axis of rotation). These two attributes describe vectors. However,

contrary to infinitesimal rotations, finite spatial rotations do not obey the laws of vector

calculus. Consequently, a rotational vector ϑ is in the literature referred to as a rotational

pseudovector, where the attribute pseudo signifies that it does not obey certain properties

of classical vectors.

It is shown by Argiris [2] that two orientations represented by orientation matrices Q1

and Q2 are related through the exponential map of the skew-symmetric matrix ϑ̂ of the

rotational vector ϑ as

Q1 = expϑ̂Q2, (4.10)

where

expϑ̂ = I +
sinϑ

ϑ
ϑ̂+

1− cosϑ

ϑ2
ϑ̂2. (4.11)

Equation (4.11) is also know as the Euler-Rodrigues formula. As in [2], the detailed

derivation of this result using the geometric approach is presented in Appendix D.

4.3.1.2 Quaternion parametrization of finite rotation

Some attempts to represent Q by some other sets of only three parameters (e.g. Euler

angles [87]) has shown to be suffering from the so-called non-uniqueness problem [87],

[89]. However, according to Euler’s rotation theorem [87], any spatial rotation can be

represented by a rotation of a given angle ϑ about a fixed axis. Therefore it can be

represented as a combination of a unit vector v and a scalar ϑ. This idea led to the

development of a 4-parameter representation of finite rotations based on the so-called

quaternions which has shown to be practical and in favor of the computational cost saving

in the numerical analysis. Compared to rotation matrices, they need less computational
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space and are shown to be more numerically stable [89]. In order to establish a unique

bijective global representation of finite rotations, a minimum of five parameters is needed

[90]. However, even though strictly speaking, the quaternion parametrisation is not a 1-1

but rather a 2-1 representation, it is useful for practical purposes [89]. If a unit vector

about which the rotation is taking place is defined as v = vxi + vyj + vzk and the angle

of rotation is defined by a scalar ϑ, the quaternion representation of such a rotation is

defined as [84]

q∗ = cos
ϑ

2
+ (vxi + vyj + vzk) sin

ϑ

2
= {q0,q} , (4.12)

where

q0 = cos
ϑ

2
, q = sin

ϑ

2

ϑ

||ϑ||
. (4.13)

It is important to note that rotations can be represented only by unit quaternions. The

parametrization of rotations via quaternions, i.e. {q0,q} ∈ S3 7→ Q ∈ SO(3) is defined

through the relation

Q = (2q2
0 − 1)I + 2q0q̂ + 2q⊗ q, (4.14)

where q̂ = q× I [84]. In general, if we define a unit quaternion as q∗ = a+ bi + cj + dk,

the orthogonal matrix corresponding to a rotation by the unit quaternion q∗ is equal to

Q =

a
2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 . (4.15)

The inverse mapping Q ∈ SO(3) 7→ {q0,q} is defined as

q0 =
1

2

√
1 + trQ, q =

1

4q0

[Q−QT
∧

]. (4.16)

However, this relation is not numerically stable due to sensitivity of the magnitude of

rotation. In order to avoid singularities, it is suggested to use the so-called Spurrier

algorithm [91]: If the trace of the orientation matrix is larger than any of the components

on the diagonal of the orientation matrix, i.e. tr(Q) > Qii compute the quaternion using

the following expressions:

q0 =
1

2

√
1 + tr(Q), qi =

(Qkj −Qjk)

4q0

, (4.17)

where j and k are chosen so that i, j, k is a cyclic permutation of 1,2,3. If any of the

components on the diagonal is larger than the trace of the orientation matrix, i.e. Qii >

tr(Q) use the following expressions:

qi =

√
Qii

2
+

(1− tr(Q))

4
, q0 =

(Qkj −Qjk)

4qi
, ql =

(Qli +Qil)

4qi
, (l = j, k), (4.18)
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where i, j, k is a cyclic permutation of 1,2,3 such that Qii is the largest.

4.4 Derivation of nonlinear micropolar equilibrium

equations

In the following, the balance equations are derived with respect to both the spatial

and material frame of reference. For the sake of clarity, the quantities pertaining to

the material frame of reference are written using the upper-case letters, whereas those

pertaining to the spatial frame of reference are written using the lower-case letters.

4.4.1 Strong form of equilibrium equations in spatial description

Let us analyse the body B in the deformed state under the influence of external actions

consisting of distributed loadings pv as a specific volume force, mv as a specific body

moment, a specific surface force ps and a specific surface moment ms as shown in Figure

4.4. The body surface S is divided into two parts: Sp with prescribed loading and Su with

prescribed displacements and rotations. Next, we observe an arbitrary part of the body,

denoted as B′ of a volume v′ and with a closed surface s′ in the deformed configuration. In

order to preserve equilibrium, by following Cauchy’s theorem as described in Section 2.1

there exist a mean stress vector t and a mean couple-stress vector m on the surface of the

extracted body. When the body part B′ becomes infinitesimally small, the mean stress

and couple-stress vectors are represented by the stress vector field t and the couple-stress

vector field m.

By establishing equilibrium in the deformed configuration, we obtain the force equi-

librium equation in the integral form

ˆ
v′

pv dv +

˛
s′

t ds = 0, (4.19)

where by applying the Cauchy theorem σ n = t as defined in equation (2.26), we obtain

ˆ
v′

pv dv +

˛
s′
σ n ds = 0, (4.20)

where n is now a unit normal to s′ in the deformed configuration.
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Figure 4.4: Body subject to applied volume load and surface traction in a deformed
configuration

In order to obtain a differential equilibrium equation we have to apply divergence theorem

defined in Theorem 1. (see Section 2.1). Applying the divergence theorem on equation

(4.20) gives

ˆ
v′

pv dv +

ˆ
v′

div σ dv = 0, (4.21)

ˆ
v′

(pv + div σ) dv = 0. (4.22)

Since equation (4.22) has to be valid for an arbitrary volume v′, we conclude that

pv + div σ = 0, (4.23)

which is the so-called strong (or differential) form of the force equilibrium. By summing

all the moments acting on the part B′ of the body B we obtain

ˆ
v′

(mv + x× pv) dv +

˛
s′

(x× t + m) ds = 0, (4.24)

where x is the position vector in the deformed configuration of a material point with

respect to the spatial frame and × denotes the cross product. Again, by applying the

Cauchy theorem σ n = t as defined in equation (2.26) and a generalisation of the Cauchy

theorem regarding the moment part as µ n = m as defined in equation (2.49) we obtain
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ˆ
v′

(mv + x× pv) dv +

˛
s′

(x× σ n + µ n) ds = 0. (4.25)

We introduce the identity x × t = x̂t as defined in equation (2.29). Equation (4.25)

may be thus written as

ˆ
v′

(mv + x̂pv) dv +

˛
s′

(x̂σ + µ) n ds = 0. (4.26)

Now, we apply the divergence theorem and obtain

ˆ
v′

(mv + x̂pv) dv +

ˆ
v′

div (x̂σ + µ) dv = 0. (4.27)

By expressing pv = −divσ from (4.23) and expressing the divergence of a sum on the

second integral in (4.27) as a sum of the corresponding divergences we obtain

ˆ
v′

(mv − x̂divσ + div(x̂σ) + divµ) dv = 0. (4.28)

Let us express the nabla operator componentially as ∇ = e1
∂
∂x1

+ e2
∂
∂x2

+ e3
∂
∂x3

with

(e1, e2, e3) as the spatial frame with respect to which (x1, x2, x3) are the components of

the position vector x. Let us now analyse the term div(x̂σ), where the summation over

repeated indices is implied:

div(x̂σ) = (x̂σ)∇

=
∂

∂xp
(x̂σ)ep

=
∂x̂

∂xp
σep + x̂

∂σ

∂xp
ep︸ ︷︷ ︸

divσ

(4.29)

=
∂x

∂xp
× σep + x̂divσ

By applying the identities (E.2) and (E.7) on the first term of the right-hand side we

obtain:

̂∂x

∂xp
× σep = (σep)⊗

∂x

∂xp
− ∂x

∂xp
⊗ (σep)

= σep

(
∂x

∂xp

)T

−
(
∂x

∂xp

)
eT
pσ

T

= σep ⊗
(
∂x

∂xp

)
−
(
∂x

∂xp

)
⊗ epσ

T (4.30)
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= σep ⊗
∂xi
∂xp︸︷︷︸
δpi

ei

︸ ︷︷ ︸
ep

− ∂xi
∂xp︸︷︷︸
δpi

ei

︸ ︷︷ ︸
ep

⊗epσ
T

= σI− IσT

= σ − σT,

where I = ep ⊗ ep is the identity tensor. Since in (4.28) we have div(x̂σ) = x̂divσ +
∂x
∂xp
× σep, i.e. we need a vector ∂x

∂xp
× σep, we employ an axial operator ax (̂·) = (·), as

an inverse operation of (̂·)v = (·)× v in order to obtain a vector from a skew-symmetric

matrix. Thus, we have
∂x

∂xp
× σep = ax

(
σ − σT

)
, (4.31)

and substituting (4.29) and (4.31) in (4.28) we obtain

ˆ
v′

(
mv − x̂divσ + ax(σ − σT) + x̂divσ + divµ

)
dv = 0, (4.32)

and finally ˆ
v′

(
divµ+ ax(σ − σT) + mv

)
dv = 0. (4.33)

Since equation (4.33) is valid for an arbitrary part of the body, it has to be valid for the

whole body. By taking this observation into account we obtain the strong form of the

second equilibrium equation in the deformed configuration as

divµ+ ax(σ − σT) + mv = 0. (4.34)

The boundary conditions are defined as

σ n = ps, µ n = ms on Sp. (4.35)

The stress σ is in the literature referred to as the true (Cauchy) stress, since in reality it

is the only stress that occurs in a deformed solid body undergoing large strains, displace-

ments and rotations [56]. The same holds for the couple stress µ, referred to as the true

couple-stress. We can see that the equilibrium equations (4.23) and (4.34) in the deformed

configuration of a non-linear micropolar continuum obtain the same form as the equilib-

rium equations (2.57) and (2.68) in the linear analysis, with grad x̂ : σ = ax(σ − σT).

However, in contrast to the linear analysis, the domain and its boundary, as well as the

position vector and orientation of a material point are now unknown. In order to find

the solution of a boundary value problem posed in such a way, we need to establish the

equilibrium equations in a known configuration.
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4.4.2 Strong form of equilibrium equations in material descrip-

tion

Let an undeformed body B0 deforms in the three-dimensional Euclidean space to

a new placement B. In the micropolar continuum theory, each material particle can

translate and rotate independently, leading to the conclusion that each material point

has six degrees of freedom (three translations and three rotations). Consequently, in the

reference placement, taken to be the undeformed state, each material point (or particle)

is defined by its position vector X = XiEi relative to the origin and by three orthonormal

vectors {Wi}, defining the orientation of the material point. In the deformed placement,

referred to as B, the position of the particle is now defined by another position vector

x = xiei relative to the origin and its orientation is defined by three new orthonormal

vectors {ki}. The relation between the two sets of orthonormal vectors is defined by

a proper orthogonal microrotation tensor Q ∈ SO(3) i.e. Q−1 = QT, detQ = +1, i.e.

ki = QWi. Even though the vector bases Ei and ei are here taken to be equal (Figure 4.5)

we keep notational distinction between them and call the fields defined over B0 material

and those defined over B spatial. In order to distinguish between these two sets, fields

belonging to the material frame are written using upper-case letters, while fields belonging

to the spatial frame are written using lower-case letters.

Figure 4.5: Initial and deformed configuration of a micropolar solid body in Euclidean
space

The relation between an infinitesimal vector in the spatial reference dx and an in-

finitesimal vector in the material reference dX is described by the so-called deformation
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gradient F as dx = F dX. The deformation gradient is a two-point tensor defined as

follows [56]:

F = GRAD x = x⊗∇X =
∂x

∂XI

⊗ EI =
∂xi
∂XI

ei ⊗ EI , (4.36)

where ∇X represents the partial differential operator with respect to the material frame

of reference. The deformation gradient tensor, besides infinitesimal vectors, defines also

the transformation of an infinitesimal surface and an infinitesimal volume element from

the material to the deformed configuration.

An infinitesimal surface element ds can be constructed as the vector product of two

infinitesimal vectors dx and dy where the unit normal to that surface is defined as

n =
(dx× dy)

‖ dx× dy ‖
. By using the transformation between infinitesimal vectors via the

deformation gradient dx = FdX we obtain

dsn = dx× dy

= (FdX)× (FdY)

= (detF F−T)(dX× dY) (4.37)

= (detF F−T)dSN

= dS(cof F)N.

The equation (4.37) is referred to as Nanson formula [56].

By defining the infinitesimal volume as a scalar product between the surface vector

dsn and the infinitesimal vector dz, i.e. dv = dz · dsn and using (4.37) we obtain the

relation between the infinitesimal volume in the initial and the deformed configuration as

follows:

dv = dz · dsn

= FdZ · (detF F−T)dSN = |detF = J |

= dZTFTF−TNJdS

= dZT(F−1F)TNJdS (4.38)

= dZTNJdS

= J dZ · dSN

= J dV.

The equation confirms that the change of an infinitesimal volume is governed by the

determinant of the deformation gradient J [56].

In order to obtain the strong form of the equilibrium equations in the material de-

scription, we start by writing the differential equilibrium equations in the weak form and

apply the so-called change of variables theorem [92]. First we multiply equation (4.23)
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and the force boundary condition (4.35)1 by an arbitrary weighting (test) function u and

equation (4.34) and its corresponding boundary condition (4.35)2 by another arbitrary

weighting (test) function ϕ, as follows:

u · (−pv − div σ) = 0, u · (σn− ps) = 0, (4.39)

ϕ ·
(
−divµ− ax(σ − σT)−mv

)
= 0, ϕ · (µn−ms) = 0. (4.40)

The test functions have to be sufficiently many times differentiable and identically equal to

zero on the part of the surface with prescribed essential (kinematic) boundary conditions

su. Now we integrate the equations over their respective domains of definition:

ˆ
v

[u · (−pv − div σ)] dv +

ˆ
v

[
ϕ ·
(
−divµ− ax(σ − σT)−mv

)]
dv

+

ˆ
sp

u · (σn− ps) ds+

ˆ
sp

ϕ · (µn−ms) ds = 0.
(4.41)

Next, we analyse the terms containing the divergence of stress and couple-stress ten-

sors, as follows:

u · div σ = u · (σ · ∇x)

= u · ∂σ
∂xi

ei

=
∂

∂xi
(u · σ) ei −

∂u

∂xi
· σei

=
∂

∂xi

(
uTσ

)
ei −

∂u

∂xi
· (σei) (4.42)

=
∂

∂xi
eT
i (σTu)− tr (

∂u

∂xi
⊗ σei) (4.43)

= ∇T
x (σTu)− tr (

∂u

∂xi
eT
i σ

T)

= ∇x · (σTu)− tr (
∂u

∂xi
⊗ eiσ

T)

= div(σTu)− gradu : σ.

By analogy we obtain:

ϕ · divµ = div(µTϕ)− gradϕ : µ. (4.44)

(4.45)
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Next we analyse the surface integral term
´
sp

u · (σn) ds:

ˆ
sp

u · (σn) ds =

ˆ
sp

uT(σn) =

ˆ
sp

(σn)Tu ds =

ˆ
sp

nTσTu ds =

ˆ
sp

n · σTu ds

=

ˆ
sp

n · σTu ds+

ˆ
su

n · σTu ds︸ ︷︷ ︸
=0

=

˛
s

n · σTu ds. (4.46)

where u is identically equal to zero on su. By applying the divergence theorem we obtain

˛
s

n · σTu ds =

ˆ
v

div(σTu) dv. (4.47)

Analogously, for the surface integral term
´
sp
ϕ · (µn) ds we obtain

ˆ
sp

ϕ · (µn) ds =

ˆ
sp

ϕT(µn) =

ˆ
sp

(µn)Tϕ ds =

ˆ
sp

nTµTϕ ds =

˛
s

n · µTϕ ds, (4.48)

where, by applying the divergence theorem we obtain

˛
s

n · µTϕ ds =

ˆ
v

div(µTϕ) dv. (4.49)

By introducing the derived terms (4.47) and (4.49) into the weak formulation (4.41)

we obtain

ˆ
v

[−div(σTu) + gradu : σ − u · pv]dv +

ˆ
v

[
−div(µTϕ) + gradϕ : µ−ϕ · ax(σ − σT)

−ϕ ·mv] dv +

ˆ
v

div(σTu) dv +

ˆ
v

div(µTϕ) dv −
ˆ
sp

(u · ps +ϕ ·ms) ds = 0,

(4.50)

and finally we obtain the principle of virtual work in the spatial description as:

ˆ
v

[
gradu : σ −ϕ · ax(σ − σT) + gradϕ : µ

]
dv =

ˆ
v

(u·pv+ϕ·mv) dv+

ˆ
sp

(u·ps+ϕ·ms) ds.

(4.51)

Now, we apply the change of variables theorem [56] to find the relations between spa-

tial entities (which we denote by lower-case letters) and corresponding material entities

(upper-case letters). As shown in equation (4.38), the relation between the deformed

differential volume dv and the undeformed differential volume is described by the deter-

minant of the deformation gradient denoted by detF = J , as dv = J dV . We introduce
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this relation into the first integral of the principle of virtual work (equation (4.51)):

ˆ
v

[
gradu : σ −ϕ · ax(σ − σT) + gradϕ : µ

]
dv

=

ˆ
V

[
gradu : σ −ϕ · ax(σ − σT) + gradϕ : µ

]
J dV (4.52)

=

ˆ
V

[
gradu : Jσ −ϕ · ax(Jσ − JσT) + gradϕ : Jµ

]
dV

where V represents the body volume in the material configuration. In the above equation

we recognise new stress tensors, in the literature known as nominal or Kirchhoff-like stress

tensors [56], which are spatial quantities, but are measured per material (undeformed)

body volume, as

Jσ = τ = τijei ⊗ ej, (4.53)

Jµ = η = ηijei ⊗ ej. (4.54)

The remaining problem in the first integral is that gradu and gradϕ are still unknown,

since they require differentiation with respect to the spatial coordinates. To resolve that

problem we introduce the relation between the nabla operator in the spatial and material

frame [56]

∇X = FT∇x ⇔ ∇x = F-T∇X, (4.55)

where ∇X represents the nabla operator in the material description, while ∇x represents

the nabla operator in the spatial description. By introducing this relation into gradu we

obtain:

gradu = u⊗∇x = u∇T
x = u(∇T

XF−1) = (u⊗∇X)F−1 = GRADu F−1. (4.56)

Equation (4.56) gives the gradient of the virtual displacement field with respect to the

material coordinates Xi. By using the same approach we obtain the relation between

the gradients of the virtual microrotation field with respect to the spatial and material

coordinates, as

gradϕ = GRADϕ F−1. (4.57)

By additional mathematical manipulation of gradu : Jσ in (4.52) we obtain

gradu : Jσ = GRADu F−1 : Jσ

= tr(GRADuJF−1σT)

= tr(GRADuJ(σF−T)T)

= GRADu : (JσF−T), (4.58)

124



i.e.

gradu : Jσ = GRADu : P, (4.59)

where P = JσF−T = τF−T = PiIei ⊗ EI represents the 1st Piola-Kirchhoff stress tensor

which is a two-point tensor. Analogously, we analyse the third term under the first integral

in (4.51) in order to obtain a corresponding two-point couple-stress tensor:

gradϕ : Jµ = GRADϕ F−1 : Jµ

= tr(GRADϕJF−1µT)

= tr(GRADϕJ(µF−T)T)

= GRADϕ : (JµF−T), (4.60)

i.e.

gradϕ : Jµ = GRADϕ : M, (4.61)

where M = JµF−T = ηF−T = MiIei ⊗EI represents the 1st Piola-Kirchhoff-like couple-

stress tensor which is also a two point tensor defined with a mixed base and is related to

the true couple stress via the deformation gradient.

By expressing the divergence of the true stress tensors with respect to the coordinates

in the initial configuration we obtain:

Jdivσ = Jσ∇x = JσF−T∇X = P∇X = DIVP, (4.62)

Jdivµ = Jµ∇x = JµF−T∇X = M∇X = DIVM. (4.63)

Finally we introduce

pv dv = PV dV, (4.64)

ps ds = PS dS, (4.65)

mv dv = MV dV, (4.66)

ms ds = MS dS, (4.67)

where PV, PS, MV and MS are the distributed volume and surface forces and couples

measured per initial volume and surface. By introducing the presented transformations

we obtain the principle of virtual work in terms of the 1st Piola-Kirchhoff stress tensor P

and the 1st Piola-Kirchhoff-like couple-stress tensor M as:

ˆ
V

[
GRADu : P−ϕ · ax(PFT − FPT) + GRADϕ : M

]
dV =

=

ˆ
V

(u ·PV +ϕ ·MV) dV +

ˆ
Sp

(u ·PS +ϕ ·MS) dS,
(4.68)
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from where the strong form of equilibrium equations on V follows as

DIVP + PV = 0, (4.69)

DIVM + ax(PFT − FPT) + MV = 0, (4.70)

with the corresponding boundary conditions PN = PS and MN = MS on Sp.

In this work we seek to obtain the stress tensors defined completely in the material

frame. To do that we additionally ”pull-back” the 1st Piola-Kirrchoff-like stress tensor

and the 1st Piola-Kirrchoff-like couple-stress tensor by multiplying the tensors with a

(micro)rotation (or (micro)orientation) matrix Q ∈ SO(3), i.e. Q−1 = QT, detQ = +1

and introduce new Biot-like stress and couple-stress tensors as:

B = QTP = QTτF−T = JQTσF−T = BIJEI ⊗ EJ

G = QTM = QTηF−T = JQTµF−T = GIJEI ⊗ EJ

where B represents the Biot-like stress tensor and G represents the Biot-like couple-stress

tensor. We call B the Biot-like, rather than Biot stress tensor as the latter is defined as

RTP where R is the macrorotation tensor in the polar decomposition of the deformation

gradient F = RU = VR, with U, V as the right and left stretch tensors, respectively

[56].

By substituting P = QB and M = QG into (4.68) we obtain the virtual work equation

in terms of the Biot-like stress tensors as

ˆ
V

[
GRADu : (QB)−ϕ · ax(QBFT − FBTQT) + GRADϕ : (QG)

]
dV =

=

ˆ
V

(u ·PV +ϕ ·MV) dV +

ˆ
Sp

(u ·PS +ϕ ·MS) dS.
(4.71)

The strong form of equilibrium equations on V expressed in terms of Biot-like stress and

couple stress tensors is thus

DIV(QB) + PV = 0, (4.72)

DIV(QG) + ax(QBFT − FBTQT) + MV = 0, (4.73)

with the boundary conditions on Sp

(QB)N = PS and (QG)N = MS. (4.74)
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4.5 Non-linear kinematic equations - derivation of

Biot-like strain tensors by using Reissner’s ap-

proach

Reissner derived the material strain measures of a 3D beam from the condition that

the virtual work equation must be equal to the equations of motion integrated over the

same domain [93]. By following Reissner’s approach, in order to derive the strain tensors,

we enforce the equivalence between the strong form of equilibrium equations and the

principle of virtual work. Firstly, we assume that there exist work-conjugate Biot-like

strain tensors to Biot-like stress tensors. The virtual work equation is given as

Vi−V e =

ˆ
V

(
E : B + K : G

)
dV−

ˆ
V

(u ·PV +ϕ ·MV) dV−
ˆ
Sp

(u ·PS +ϕ ·MS) dS = 0,

(4.75)

where E represents the material virtual micropolar Biot-like strain tensor and K represents

the material virtual Biot-like curvature tensor which are work-conjugate to the Biot-like

stress tensors B and G. The virtual displacement field u and the virtual microrotation

field ϕ are assumed to be kinematically admissible and such that the internal virtual work

is linear in terms of them. The virtual strain tensors then follow as the strain tensors for

linearized kinematics.

We start by expressing the external loading from the equilibrium equations and in-

troducing them into the virtual work equation, i.e. we introduce the following equalities

from (4.72), (4.73) and (4.74):

PV = −DIV(QB), (4.76)

MV = −DIV(QG)− ax(QBFT − FBTQT), (4.77)

PS = (QB)N, (4.78)

MS = (QG)N, (4.79)

into (4.75) and obtain

ˆ
V

(
E : B + K : G

)
dV

= −
ˆ
V

(
u ·DIV(QB) +ϕ · (DIV(QG) + ax(QBFT − FBTQT)

)
dV

+

ˆ
Sp

(u · (QB)N +ϕ · (QG)N) dS. (4.80)
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As shown before, the following identities hold:

u ·DIV(QB) = DIV
(
(QB)Tu

)
−GRADu : (QB), (4.81)

ϕ ·DIV(QG) = DIV
(
(QG)Tϕ

)
−GRADϕ : (QG). (4.82)

By using identities (E.10) and (E.11) defined in Appendix E we rewrite double contraction

terms from equations (4.81) and (4.82) as

GRADu : (QB) = tr
(
GRADuBTQT

)
= QTGRADu : B,

GRADϕ : (QG) = tr
(
GRADϕGTQT

)
= QTGRADϕ : G. (4.83)

Futhermore, we apply identity (E.13) valid for any 2nd order tensor A on ax(QBFT −
FBTQT) from (4.80) and obtain

ϕ · ax(QBFT − FBTQT) = −ϕ · ε : (QBFT) = −ϕ̂ : (QBFT), (4.84)

where ϕ̂ is the skew-symmetric tensor of vector ϕ. By applying the identities (E.10),

(E.11) and (E.8) and we obtain

ϕ̂
T

: (QBFT) = tr(ϕ̂QBFT) = (FTϕ̂Q) : BT = (FTϕ̂Q)T : B = (QTϕ̂
T
F) : B (4.85)

Finally, we apply the divergence theorem on terms under the surface integral in (4.80)

and by using (E.1) and recognising that u and ϕ vanish on Su we obtain:

ˆ
Sp

u ·QBNdS =

ˆ
S

u ·QBNdS =

ˆ
V

DIV
(
(QB)Tu

)
dV,

ˆ
S

ϕ ·QGNdS =

ˆ
Sp

ϕ ·QGNdS =

ˆ
V

DIV
(
(QG)Tϕ

)
dV. (4.86)

By introducing (4.81), (4.82), (4.83), (4.85) and (4.86) into (4.80) and using identity

(E.11) we obtain

ˆ
V

(
E : B + K : G−QTGRADu : B−QTGRADϕ : G− (QTϕ̂

T
F) : B

)
dV = 0,

(4.87)

i.e.ˆ
V

(
E−QTGRADu− (QTϕ̂

T
F)
)

: B dV +

ˆ
V

(
K−QTGRADϕ

)
: G dV = 0. (4.88)

For arbitrary B and G equation (4.88) is identically satisfied only for

E = QT(GRADu + ϕ̂
T
F), (4.89)
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K = QTGRADϕ, (4.90)

where equations (4.89) and (4.90) represent the virtual Biot-like strain tensors of a mi-

cropolar continuum in the geometrically non-linear regime. In order to obtain the total

Biot-like strain tensors, we recognise the total-differential character of the virtual strain

tensors E and K and integrate equations (4.89) and (4.90). By making use of directional

derivative of the orientation matrix Q = ϕ̂Q derived in Appendix G.1, equation (G.1) we

obtain from (4.89)

E = QTGRADu + Q
T
F

= QTGRADu + Q
T

GRADx

= QTGRADx + Q
T

GRADx

= QTGRADx + Q
T

GRADx (4.91)

= (QTGRADx)

= (QTF).

We now integrate E = (QTF) and obtain

E = QTF + C1 (4.92)

where C1 is an integration constant. By taking into account that the initial configuration

is undeformed (i.e. E0 = 0 ) we obtain

C1 = −QT
0 F0 = −QT

0 GRADX = −I. (4.93)

Finally, we obtain the Biot-like translational strain tensor as

E = QTF− I. (4.94)

In order to derive the real curvature from (4.90), we start by extracting a curvature

vector Ki from K = Ki ⊗ Ei such that Ki = KEi as

Ki = QT ∂ϕ

∂Xi

(4.95)

where
∂ϕ

∂Xi

= GRADϕ · Ei. By using the identities Q̂v = Qv̂QT ∀ v ∈ R3 and v̂ =

−v̂T ∀ v̂ ∈ so(3) [94] we obtain

K̂i = K̂Ei = QT ∂ϕ̂

∂Xi

Q. (4.96)
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By writing the equation using the integration by parts rule we obtain

K̂i = QT ∂ϕ̂

∂Xi

Q

= QT ∂

∂Xi

(ϕ̂Q)−QTϕ̂
∂

∂Xi

Q

= QT ∂

∂Xi

(ϕ̂Q) + QTϕ̂
T ∂

∂Xi

Q

= QT ∂

∂Xi

(ϕ̂Q) + (ϕ̂Q)T ∂

∂Xi

Q. (4.97)

We recognize the directional derivative of the microrotation matrix Q = ϕ̂Q and obtain

K̂i = QT ∂

∂Xi

Q + Q
T ∂

∂Xi

Q =

(
QT

∂Q

∂Xi

)
. (4.98)

By introducing the axial operator (E.4) into (4.98) we obtain

Ki = ax

(
QT

∂Q

∂Xi

)
KEi = ax

(
QT

∂Q

∂Xi

)
/⊗ Ei

K Ei ⊗ Ei︸ ︷︷ ︸
I

= ax

(
QT

∂Q

∂Xi

)
⊗ Ei

K = ax

(
QT

∂Q

∂Xi

)
⊗ Ei. (4.99)

Furthermore, as shown in (E.4), the axial vector of a skew-symmetric tensor can be written

as a negative double contraction between the third-order permutation tensor ε and the

skew-symmetric tensor halved. By expressing the axial vector from (4.99) in this way, i.e.

K = −1

2
ε :

(
QT

∂Q

∂Xi

)
⊗ Ei (4.100)

and recognizing that

(
QT

∂Q

∂Xi

)
⊗Ei = QT

∂Q

∂Xi

⊗ Ei = QTGRADQ, we obtain an easily

integrable expression

K = −1

2
ε :
(
QTGRADQ

)
. (4.101)

By treating the overlined entities as total differentials and integrating the equation (4.101)

we obtain

K = −1

2
ε :
(
QTGRADQ

)
+ C2 (4.102)

where C2 is an integration constant. By taking into account that the initial configuration

is undeformed (i.e. K0 = 0 ) we obtain C2 = 0. Finally, the total Biot-like curvature
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tensor is obtained as

K = −1

2
ε :
(
QTGRADQ

)
, (4.103)

where K = Ki ⊗ Ei with Ki = ax

(
QT ∂Q

∂Xi

)
.

The derived Biot-like strain tensors coincide with the micropolar material strain mea-

sures derived in [45], where the strain tensor is referred to as the stretch tensor, while the

curvature tensor is referred to as the wryness tensor. Furthermore, when the Biot-like

strain tensors are reduced to 1D, the same form of equations are obtained as the material

strain measures of the geometrically exact 3D beam theory, e.g. [94].

4.6 Constitutive equations

In the scope of this thesis only geometric nonlinearity is analysed, keeping the consti-

tutive equations linear, as presented in Section 2.4. The first constitutive equation may

thus be applied to the present Biot-like stress and strain tensors and written in matrix

form as

B11 B12 B13

B21 B22 B23

B31 B32 B33


︸ ︷︷ ︸

B

=



(λ+ 2µ) 0 0

0 λ 0

0 0 λ


 0 (µ+ ν) 0

(µ− ν) 0 0

0 0 0


 0 0 (µ+ ν)

0 0 0

(µ− ν) 0 0


 0 (µ− ν) 0

(µ+ ν) 0 0

0 0 0


λ 0 0

0 (λ+ 2µ) 0

0 0 λ


0 0 0

0 0 (µ+ ν)

0 (µ− ν) 0


 0 0 (µ− ν)

0 0 0

(µ+ ν) 0 0


0 0 0

0 0 (µ− ν)

0 (µ+ ν) 0


λ 0 0

0 λ 0

0 0 (λ+ 2µ)



︸ ︷︷ ︸
T

:

E11 E12 E13

E21 E22 E23

E31 E32 E33


︸ ︷︷ ︸

E

,

(4.104)

where T is given in a tensor form in (2.161). This leads to

B = λ(tr E)I + (µ+ ν)E + (µ− ν)ET, (4.105)

a result equivalent to (2.168).
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The second constitutive equation likewise follows as

G11 G12 G13

G21 G22 G23

G31 G32 G33


︸ ︷︷ ︸

G

=



(α + 2β) 0 0

0 α 0

0 0 α


 0 (β + γ) 0

(β − γ) 0 0

0 0 0


 0 0 (β + γ)

0 0 0

(β − γ) 0 0


 0 (β − γ) 0

(β + γ) 0 0

0 0 0


α 0 0

0 (α + 2β) 0

0 0 α


0 0 0

0 0 (β + γ)

0 (β − γ) 0


 0 0 (β − γ)

0 0 0

(β + γ) 0 0


0 0 0

0 0 (β − γ)

0 (β + γ) 0


α 0 0

0 α 0

0 0 (α + 2β)



︸ ︷︷ ︸
D

:

K11 K12 K13

K21 K22 K23

K31 K32 K33

,
︸ ︷︷ ︸

K

(4.106)

where the tensor form of D is given in (2.181) and leads to

G = α(tr K)I + (β + γ)K + (β − γ)KT, (4.107)

a result equivalent to (2.182).
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Chapter 5

Non-linear micropolar finite element

analysis in 3D

We start by writing the weak formulation obtained by the virtual work principle (4.75)

Vi − Ve = G(u,Q; u,ϕ) =

ˆ
V

(
E : B + K : G

)
dV −

ˆ
V

(u ·PV +ϕ ·MV) dV

−
ˆ
Sp

(u ·PS +ϕ ·MS) dS = 0.

and introduce the the virtual strain tensors (4.89) and (4.90) to obtain

G(u,Q,u,ϕ) =

ˆ
V

((
QT(GRADu + ϕ̂

T
F)
)

: B + (QTGRADϕ) : G
)
dV

−
ˆ
V

(u ·PV +ϕ ·MV) dV −
ˆ
Sp

(u ·PS +ϕ ·MS) dS = 0.
(5.1)

In order to discretise the problem and to obtain the residual load vector (the out-of-

balance load vector), the virtual kinematic fields have to be approximated using chosen

interpolations. In general, the virtual fields can be interpolated as uh = Nud
e

and

ϕh = Nϕd
e
. The matrices Nu and Nϕ represent the matrices of interpolation functions

for the virtual displacement and microrotation field and d
e

represents the virtual vector

of element nodal degrees of freedom. For the domain discretization we choose two finite

elements, hexahedral finite elements with 8 and 27 nodes, both of which have six degrees of

freedom per node. We refer to them as Hex8NL and Hex27NL. The numbering convention

we follow is the one defined in FEAP [95], which for Hex8NL is shown in Figure 3.23,

while for Hex27NL is shown in Figure 5.1 (Note: To avoid cluttering, the nodes have been

shown in three separate images.).
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Figure 5.1: Isoparametric hexahedral finite element with 27 nodes

The virtual vector of element nodal degrees of freedom is thus defined as d
e

=

〈de1 d
e

2 . . . d
e

nnode
〉, where d

e

i =
〈
d
e

ui
d
e

ϕi

〉T

= 〈u1i u2i u3i ϕ1i ϕ2i ϕ3i〉
T, i being the node

number. The matrix of Lagrange interpolation functions in the displacement field ap-

proximation is Nu = [N1 0 . . . Nnnode 0], with explicit form of the sub-matrix of

Lagrange interpolation functions as (3.45). The isoparametric shape functions for the

Hex8NL element are defined in (3.44), while for the Hex27NL they are defined as [67]:

1. For vertex nodes: (3.44)

2. For mid-edge nodes:

Ni =
1

4


(1− ξaξ)(1 + η2)(1 + ζaζ), i = 9, 11, 13, 15,

(1− ξ2)(1 + ηaη)(1 + ζaζ), i = 10, 12, 14, 16,

(1− ξaξ)(1 + ηaη)(1 + ζ2), i = 17, 18, 19, 20.

(5.2)

3. For mid-face nodes:

Ni =
1

2


(1− ξ2)(1− η2)(1 + ζaζ), i = 21, 22,

(1− ξ2)(1 + ηaη)(1− ζ2), i = 23, 24,

(1 + ξaξ)(1− η2)(1− ζ2), i = 25, 26.

(5.3)

4. For the interior node

N27 = (1− ξ2)(1− η2)(1− ζ2). (5.4)

The matrix of interpolation functions in the microrotation field approximation is defined

in an analogous way, i.e. Nϕ = [0 N1. . . 0 Nnnode ], with Ni and 0 in the switched

position compared to those in Nu. The interpolated virtual fields are now introduced into

(5.1). For the sake of simplicity, each term in the weak formulation is treated separately.
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By introducing the interpolation into the term
(
QTGRADuh

)
: B we obtain:

(
QTGRADuh

)
: B = d

eT

A Nu
T∇X , (5.5)

where

A =



QB 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 QB 0 · · · 0 0

0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · QB 0

0 0 0 0 · · · 0 0


, (5.6)

i.e. a square matrix assembled of nnode × nnode 6 × 6 blocks

[
QB 0

0 0

]
along the diago-

nal region and zero elsewhere. The detailed exposition of the derivation is presented in

Appendix G.10.1. Analogously, we obtain

(
QTGRADϕh

)
: G = d

eT

L Nϕ
T∇X , (5.7)

where

L =



0 0 0 0 · · · 0 0

0 QG 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 0 QG · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 QG


(5.8)

represents a matrix made of nnode×nnode blocks equal to 6×6 matrices

[
0 0

0 QG

]
along the

diagonal region and zero matrices elsewhere. Furthermore, by introducing interpolation

of the virtual fields into
(
QTϕ̂

T
F
)

: B, we obtain

(
QTϕ̂h

T

F

)
: B = 2d

eT

Nϕ
Tax

(
skew

(
FBTQT

))
, (5.9)

where skew
(
FBTQT

)
=

1

2

(
FBTQT −QBFT

)
. The detailed exposition of the derivation

of (5.9) can be found in Appendix G.10.3. Finally, the interpolated principle of virtual
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work (in terms of virtual fields only) is equal to

ˆ
V

(
d
eT

A Nu
T∇X + 2d

eT

Nϕ
Tax

(
skew

(
FBTQT

))
+ d

eT

L Nϕ
T∇X

)
dV−

ˆ
V

(
d
eT

Nu
TPV + d

eT

Nϕ
TMV

)
dV −

ˆ
Sp

(
d
eT

Nu
TPS + d

eT

Nϕ
TMS

)
dS = 0.

(5.10)

By extracting the vector of virtual nodal displacements and microrotations out of the

integral we obtain

d
eT
{ˆ

V

(
A Nu

T∇X + 2Nϕ
Tax

(
skew

(
FBTQT

))
+ L Nϕ

T∇X

)
dV −

ˆ
V

(
Nu

TPV + Nϕ
TMV

)
dV −

ˆ
Sp

(
Nu

TPS + Nϕ
TMS

)
dS

}
= 0.

Now we can introduce the element residual force vector ge as

d
eT

ge = d
eT (

qint,e − qext,e
)

= 0, (5.11)

where

ge =

ˆ
V

(
A Nu

T∇X + 2Nϕ
Tax

(
skew

(
FBTQT

))
+ L Nϕ

T∇X

)
dV+

−
ˆ
V

(
Nu

TPV + Nϕ
TMV

)
dV −

ˆ
Sp

(
Nu

TPS + Nϕ
TMS

)
dS = 0,

while qint,e represents the element vector of internal forces and qext,e represents the element

vector of external forces, which follow from (5.11) as

qint,e =

ˆ
V

(
A Nu

T∇X + 2Nϕ
Tax

(
skew

(
FBTQT

))
+ L Nϕ

T∇X

)
dV, (5.12)

qext,e =

ˆ
V

(
Nu

TPV + Nϕ
TMV

)
dV +

ˆ
Sp

(
Nu

TPS + Nϕ
TMS

)
dS. (5.13)

The element internal force vector at node i thus follows from (5.6), (5.8), (5.9) and the

structure of Nu and Nϕ as

qint,ei =

ˆ
V

{
QB(Ni∇X)

2Niax(skew(FBTQT)) + QG(Ni∇X)

}
dV. (5.14)

5.1 Linearization of the element residual force vector

To solve a nonlinear boundary-value problem, the nonlinear equations have to be

linearized and solved as a sequence of linear problems, i.e. in order to proceed to finding
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the solution of this problem, the residual force has to be linearized as follows

Lin [g(u,Q)]) = g(u,Q) + ∆g

= g(u,Q) +
d

dε

∣∣∣∣
ε=0

g
(
u + ε∆u, exp(ε∆̂ϕ)Q

)
= 0, (5.15)

with ∆(•) =
d

dε

∣∣∣∣
ε=0

(•)ε as the directional derivative in the direction of the infinitesimally

small perturbations ∆u and ∆ϕ, where making Lin(g) vanish in a series of iterative

solutions provides an algoritmic basis for the solution process.

When the linearization of the element residual is performed, the following general form

is obtained:

ge(u,Q) + ∆ge = qint,e − qext,e + Ke∆de = 0, (5.16)

where Ke represents the element tangent stiffness matrix. In the nonlinear analysis Ke

consists of two parts:

Ke = KM
e + KG

e. (5.17)

The matrix KM
e is referred to as the element material stiffness matrix and KG

e is re-

ferred to as the element geometric stiffness matrix. The part KM
e depends on material

properties, while the part KG
e depends on stresses and is a characteristic of large dis-

placement/rotation problems and consequently does not exist in the linear analysis.

The linearization of each term in the element residual is derived and presented in

detail in Appendix G. By introducing the linearized terms derived there and substituting

` = ax(skew(FQT)) we obtain the element incremental residual

∆ge =


∆ge1

∆ge2
...

∆gennode

 . (5.18)

The element incremental nodal residual ∆gei is thus

∆gei =

ˆ {
∆ge1i

∆ge2i

}
dV, (5.19)

where vectors ∆ge1i and ∆ge2i are equal to

∆ge1i =
(

∆̂ϕQB + Q (T : ∆E)
)

(Ni∇X),

∆ge2i =
(

∆̂ϕQG + Q (D : ∆K)
)

(Ni∇X)

−Niε :
(

GRAD∆uBTQT + F(T : ∆E)TQT + FBTQT∆̂ϕ
T
)
. (5.20)
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Here, we introduce the equalities derived in Sections G.10.1, G.10.2 and G.10.3 of Ap-

pendix G, as follows:(
∆̂ϕQB + Q (T : ∆E)

)
(Ni∇X)

=
(
λQ(Ni∇X)∇T

XQT + (µ+ ν)∇T
X(Ni∇X)I + (µ− ν)Q∇X(Ni∇X)TQT

)
∆u

+
(
−QB(Ni∇X)
∧

+ λQ(Ni∇X)2
[
ax(skew(FQT))

]T
+ (µ+ ν)F(Ni∇X)
∧

−(µ− ν)QFTQ(Ni∇X)
∧)

∆ϕ, (5.21)

where free ∇X in the factor multiplying ∆u operates exclusively on ∆u,(
∆̂ϕQG + Q (D : ∆K)

)
(Ni∇X) (5.22)

=
(
−QG(Ni∇X)
∧

+ αQ(Ni∇X)∇T
XQT + (β + γ)∇T

X(Ni∇X) + (β − γ)Q∇X(Ni∇X)TQT
)

∆ϕ,

where free ∇X in the factor multiplying ∆ϕ operates exclusively on ∆ϕ and

−Niε :
(

GRAD∆uBTQT + F(T : ∆E)TQT + FBTQT∆̂ϕ
T
)

= NiQB∇X

∧
∆u + 4λNi ax(skew(FQT))

[
ax(skew(FQT))

]T
∆ϕ

+ 2λNi ax(skew(FQT))∇T
XQT∆u− (µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆ϕ

− (µ+ ν)NiF∇X

∧
∆u

+ (µ− ν)Ni [m1 m2 m3] ∆ϕ

+ (µ− ν)NiQ∇X

∧
FQT∆u +Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]

∆ϕ, (5.23)

where mi = ax(2skew(FQTεiFQT)) and εi is a submatrix of the Levi-Civita tensor, as

presented in equation (G.38). In (5.23) all ∇X operate on ∆u.

Finally, we obtain the vectors ∆ge1i and ∆ge2i as

∆ge1i =−QB(Ni∇X)
∧

∆ϕ+ λQ(Ni∇X)2`T∆ϕ+ λQ(Ni∇X)∇T
XQT∆u

+ (µ+ ν)F(Ni∇X)
∧

∆ϕ+ (µ+ ν)∇T
X(Ni∇X)∆u

− (µ− ν)QFTQ(Ni∇X)
∧

∆ϕ+ (µ− ν)Q∇X(Ni∇T
X)QT∆u, (5.24)

∆ge2i =−QG(Ni∇X)
∧

∆ϕ+ αQ(Ni∇X)∇T
XQT∆ϕ+ (β + γ)∇T

X(Ni∇X)∆ϕ

+ (β − γ)Q∇X(Ni∇T
X)QT∆ϕ+NiQB∇X

∧
∆u + 4λNi ``

T∆ϕ

+ 2λNi `∇T
XQT∆u− (µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆ϕ− (µ+ ν)NiF∇X

∧
∆u

+ (µ− ν)Ni [m1 m2 m3] ∆ϕ+ (µ− ν)NiQ∇X

∧
FQT∆u

+Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]

∆ϕ. (5.25)
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Next, we split the element incremental nodal residual ∆gei into its geometric and material

part as:

∆gei = ∆geGi + ∆geMi
. (5.26)

In order to obtain the geometric element stiffness matrix, we observe the part of the

element incremental residual geGi which depends on stresses B and/or G which is equal

to:

∆geGi =

ˆ
V

{
∆ge1Gi

∆ge2Gi

}
dV, (5.27)

where vectors ∆ge1Gi
and ∆ge2Gi

are equal to

∆ge1Gi
=
(
−QB(Ni∇X)
∧

+ 2λQ(Ni∇X)`T
)

∆ϕ, (5.28)

∆ge2Gi
=
(
−QG(Ni∇X)
∧

+ 4λNi``
T +Ni

[
(FBTQT)T − tr(FBTQT)I

])
∆ϕ

+
(
NiQB∇X

∧
+ 2λNi`∇T

XQT
)

∆u. (5.29)

It is important to note that terms λQ(Ni∇X)`T∆ϕ , 4λNi``
T and 2λNi`∇T

XQT∆u

contain the material parameter λ and as such is more intuitive to be classified as terms

belonging to the material part. However, in the linear analysis of the present formulation

these three terms vanish, as proven in Appendix H, which is the reason why we classi-

fied them as a part of the geometric stiffness. By extracting the vector of incremental

displacements and microrotations we obtain

∆geGi =

ˆ
V

[
0 −QB(Ni∇X)

∧

+ 2λQ(Ni∇X)`T

NiQB∇X

∧
+ 2λNi`∇T

XQT −QG(Ni∇X)
∧

+ 4λNi``
T +Ni

[
(FBTQT)T − tr(FBTQT)I

]]{∆u

∆ϕ

}
dV,

(5.30)

where 0 is a 3 × 3 zero matrix. Now we introduce into (5.30) the interpolation of the

kinematic field increments defined earlier as

∆uh =

nnode∑
j=1

Nj(ξ, η, ζ)∆uj, ∆ϕh =

nnode∑
j=1

Nj(ξ, η, ζ)∆ϕj, (5.31)

and by extracting the interpolated vector of incremental nodal degrees of freedom ∆dej ={
∆u

∆ϕ

}
we obtain

∆geGi =

nnode∑
j=1

KG
e
ij∆dej , (5.32)

where the 6× 6 element block geometric stiffness matrix KG
e
ij follows as
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KG
e
ij =

ˆ
V

[
0 KG

e1
ij

KG
e2
ij KG

e3
ij

]
dV, (5.33)

where the submatrices are

KG
e1
ij = −QB(Ni∇X)
∧

Nj + 2λQ(Ni∇X)`TNj, (5.34)

KG
e2
ij = NiQB(Nj∇X)
∧

+ 2λNi`(Nj∇X)TQT, (5.35)

KG
e3
ij = −QG(Ni∇X)
∧

Nj + 4λNiNj``
T +NiNj

[
(FBTQT)T − tr(FBTQT)I

]
. (5.36)

Next we define the element nodal incremental material residual ∆geMi
as

∆geMi
=

ˆ
V

{
∆ge1Mi

∆ge2Mi

}
dV, (5.37)

where vectors ∆ge1Mi
and ∆ge2Mi

are equal to

∆ge1Mi
=
(
λQ(Ni∇X)∇T

XQT + (µ+ ν)∇T
X(Ni∇X)I + (µ− ν)Q∇X(Ni∇X)TQT

)
∆u

+
(

(µ+ ν)F(Ni∇X)
∧

− (µ− ν)QFTQ(Ni∇X)
∧)

∆ϕ, (5.38)

∆ge2Mi
=
(
−(µ+ ν)NiF∇X

∧
+ (µ− ν)NiQ∇X

∧
FQT

)
∆u

+
(
αQ(Ni∇X)∇T

XQT + (β + γ)∇T
X(Ni∇X)I + (β − γ)Q∇X(Ni∇T

X)QT

−(µ+ ν)Ni

(
FFT − tr(FFT)I

)
+ (µ− ν)Ni [m1 m2 m3]

)
∆ϕ. (5.39)

By extracting the vector of incremental displacements and microrotations and intro-

ducing the interpolation of the kinematic field increments defined in equation (5.31) into

(5.37) and extracting ∆dej we obtain

∆geMi
=

nnode∑
j=1

KM
e
ij∆dej , (5.40)

where the 6× 6 element block material stiffness matrix KM
e
ij follows as

KM
e
ij =

ˆ
V

[
KM

e1
ij KM

e2
ij

KM
e3
ij KM

e4
ij

]
dV, (5.41)

where the submatrices are

KM
e1
ij = λQ(Ni∇X)(Nj∇X)TQT + (µ+ ν)(Nj∇X)T(Ni∇X)I
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+ (µ− ν)Q(Nj∇X)(Ni∇X)TQT (5.42)

KM
e2
ij = (µ+ ν)F(Ni∇X)
∧

Nj − (µ− ν)QFTQ(Ni∇X)
∧

Nj, (5.43)

KM
e3
ij = −(µ+ ν)NiF(Nj∇X)
∧

+ (µ− ν)NiQ(Nj∇X)
∧

FQT, (5.44)

KM
e4
ij = αQ(Ni∇X)(Nj∇T

X)QT + (β + γ)(Nj∇T
X)(Ni∇X)I + (β − γ)Q(Nj∇X)(Ni∇T

X)QT

− (µ+ ν)NiNj

(
FFT − tr(FFT)I

)
+ (µ− ν)NiNj [m1 m2 m3] . (5.45)

Finally, the element stiffness matrix is the sum of geometric and material stiffness block

matrices in the following form

Ke =


[KM

e
11] + [KG

e
11] [KM

e
12] + [KG

e
12] · · · [KM

e
1n] + [KG

e
1n]

[KM
e
21] + [KG

e
21] [KM

e
22] + [KG

e
22] · · · [KM

e
2n] + [KG

e
2n]

...
...

. . .
...

[KM
e
n1] + [KG

e
n1] [KM

e
n2] + [KG

e
n2] · · · [KM

e
nn] + [KG

e
nn]

 , (5.46)

where n in (5.46) represents the number of nodes on the element (here introduced instead

of nnode for the sake of clarity).

The derived formulation is tested by comparing the stiffness matrix with the stiffness

matrix obtained in the linear analysis. This is presented in Appendix H.

From this point on, we can proceed towards the standard finite element assembly

accounting for all element contributions, i.e.

K =
nelem
A
e=1

Ke, qint =
nelem
A
e=1

qint,e, qext =
nelem
A
e=1

qext,e. (5.47)

After performing the finite element assembly procedure and introducing the boundary

conditions we obtain the global system of equations we need to solve as

∆d = −K−1
(
qint − qext

)
, (5.48)

where ∆d represents the global vector of nodal incremental displacements and incremental

microrotations, which are the basic unknowns of our problem, K is the global stiffness

matrix, qint is the global internal force vector and qext is the global external force vector.

By linearizing the residual the initial non-linear system of equations is reduced to a sys-

tem of linear equations which we can solve using the rapidly convergent Newton-Raphson

iterative method. The basic steps of the Newton-Raphson method are outlined as follows:

DO k = 1, 2, ..., niter
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• Compute the stiffness matrix and obtain the iterative correction:

∆d(k) = −K−1(d(k))
(
qint(d(k))− qext

)
(5.49)

• Update the displacement vector and orientation matrix

• Test convergence

IF ||qext − qint(d(k+1))|| ≤ tol ⇒ CONVERGED SOLUTION

ELSE ⇒ NEXT ITERATION (k + 1)

In the 1st iteration we assume that the system is undeformed, i.e.

u = 0, Q = I, ⇒ F = I, B = 0, G = 0, (5.50)

and by solving the system of equations (5.48) we obtain the first increments of the dis-

placement field ∆u(1) and increments of the microrotation field ∆ϕ(1). The obtained

results correspond to the results obtained in the linear analysis. Then we update the

value of the displacement field as

u(2) := u(1) + ∆u(1). (5.51)

In general, the update of the displacement field is defined as

u(k+1) := u(k) + ∆u(k) (5.52)

where the superscript (k) define the iteration number.

As mentioned earlier, due to non-linearity of the finite rotation space, the update

of the orientation matrix Q must be performed differently. In our work we choose the

quaternion parametrization of orientation matrices. In general, after obtaining the vector

increment of the microrotation field ∆ϕ(k) in the k-th iteration we form the corresponding

quaternion increment as

q′
(k)
∆ϕ =

{
q

(k)
∆ϕ, q

(k)
∆ϕ

}
=

cos

(
∆ϕ(k)

2

)
,

sin

(
∆ϕ(k)

2

)
∆ϕ(k)

∆ϕ(k)

 , (5.53)

where ∆ϕ(k) represents the norm of vector ∆ϕ(k), i.e. ∆ϕ(k) =
√

∆ϕ(k) ·∆ϕ(k). The

quaternion update is defined through the quaternion multiplication, i.e.

q′
(k+1)

= q′
(k)
∆ϕ ◦ q′

(k)
=
{
q

(k+1)
0 , q(k+1)

}
, (5.54)
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where q′(k) =
{
q

(k)
0 , q(k)

}
is the quaternion obtained in the previous (k−th) iteration.

The updated quaternion is obtained as [88]

q′
(k+1)

=
{
q

(k)
∆ϕ · q

(k)
0 − q

(k)
∆ϕ · q

(k), q
(k)
∆ϕ × q(k) + q

(k)
0 · q

(k)
∆ϕ + q

(k)
∆ϕ · q

(k)
}
. (5.55)

Next, by following (4.14) we form the updated orientation matrix Qnew as

Qnew = (2q
(k+1)2

0 − 1)I + 2q
(k+1)
0 q(k+1)
∧

+ 2q(k+1) ⊗ q(k+1). (5.56)

Update of Biot-like strain and curvature tensors

In order to update the Biot-like strain and curvature tensors E and K we have to compute

the values of the displacement field and orientation matrix at the integration points. For

the deformation gradient F, these values are easily obtained by finding the derivative of

the interpolated values in the corresponding Gauss point l as follows:

F = I + GRAD

(
nnode∑
j=1

Ni(ξl, ηl, ζl)ui

)
(5.57)

= I +

nnode∑
j=1


ui1

ui2

ui3

⊗


∂Ni(ξl,ηl,ζl)
∂X1

∂Ni(ξl,ηl,ζl)
∂X2

∂Ni(ξl,ηl,ζl)
∂X3

 , (5.58)

and the values of the orientation matrix are obtained as Q = exp(∆̂ϕ)Qold where Qold

represents the orientation matrix in the previous iteration. Then, the current strain tensor

is evaluated by substituting the obtained matrices F and Q into equation (4.94).

In order to update the curvature tensor, we start by extracting the curvature vector

Ki from K = [K1 K2 K3]. As shown in equation (4.98) for its virtual form, the curvature

vector Ki is defined as

Ki = ax(K̂i) = ax

(
QT ∂Q

∂Xi

)
. (5.59)

Next, we introduce Q = exp(∆̂ϕ)Qold into K̂i = QT ∂Q

∂Xi

and obtain

K̂i = QT
oldexp(∆̂ϕ)T

∂
(

exp(∆̂ϕ)Qold

)
∂Xi

.
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We further obtain

K̂i = QT
oldexp(∆̂ϕ)T∂exp(∆̂ϕ)

∂Xi

Qold + QT
old exp(∆̂ϕ)Texp(∆̂ϕ)︸ ︷︷ ︸

I

∂Qold

∂Xi

.

Here, we recognize that QT
old

∂Qold

∂Xi

= K̂iold and obtain

K̂i = QT
oldexp(∆̂ϕ)T∂exp(∆̂ϕ)

∂Xi

Qold + K̂iold.

Next, we rewrite Qold = exp(∆̂ϕ)TQ and obtain

K̂i = QT exp(∆̂ϕ)exp(∆̂ϕ)T︸ ︷︷ ︸
I

∂exp(∆̂ϕ)

∂Xi

exp(∆̂ϕ)TQ + K̂iold

= QT∂exp(∆̂ϕ)

∂Xi

exp(∆̂ϕ)TQ + K̂iold.

After a lengthy, but otherwise straightforward algebraic manipulation of the term

∂exp(∆̂ϕ)

∂Xi

exp(∆̂ϕ)T (which is presented in detail in [85]) we obtain

K̂i = QTH(∆ϕ)
∂∆ϕ

∂Xi

∧

Q + K̂iold

= K̂iold + ∆K̂i, (5.60)

where

H(∆ϕ) = I +
1− cos(∆ϕ)

(∆ϕ)2
∆̂ϕ+

∆ϕ− sin(∆ϕ)

(∆ϕ)3
∆̂ϕ

2
, (5.61)

and ∆ϕ represents the norm of the iterative change in the microrotation vector. Finally,

by using the identity Q̂v = Qv̂QT ∀ v ∈ R3, Q ∈ SO(3), we obtain the update of the

material curvature vector as

Ki = QTH(∆ϕ)
∂∆ϕ

∂Xi

+ Kiold. (5.62)

Finally, the update of the curvature tensor can be regarded as the update of the three

curvature vectors, i.e. K = [K1 K2 K3] where

K1 = QTH(∆ϕ)
∂∆ϕ

∂X1

+K1old, K2 = QTH(∆ϕ)
∂∆ϕ

∂X2

+K2old, K3 = QTH(∆ϕ)
∂∆ϕ

∂X3

+K3old,

(5.63)
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which can be written as

K = Kold + ∆K

= Kold + QTH(∆ϕ)GRAD(∆ϕ). (5.64)

5.2 Numerical examples - nonlinear analysis

In the framework of micropolar elasticity, to the best of our knowledge the only work

dealing with pure geometrical nonlinearity of 3D solids including finite-element implemen-

tation is due to Bauer et al. [49]. This work encompasses mostly benchmark problems

for which an analytical solution only in the linear regime is provided, since, as also stated

in that work, no analytical solutions for large-deformation micropolar elasticity is avail-

able. To the best of our knowledge, this is indeed so and here a pure-bending non-linear

micropolar analytical solution is derived in order to test the validity of the presented

finite elements and is presented in Section 5.2.1. Next, in Section 5.2.2 the non-linear

hexahedral finite elements are tested by modelling the cantilever beam problem subject

to pure bending and the obtained results are compared against the derived analytical

solution. Their performance is further tested in three additional numerical examples. In

Section 5.2.3, a T-shape structure subject to bending and torsion is modelled by following

the approach presented in [49]. So far as we are aware, this problem represents the only

geometrically nonlinear numerical example documented in the literature. Its capacity to

test the elements in 3D is limited, though, and next a real three-dimensional problem

consisting of a in-plane curved beam subject to out-of-the-plane loading is analysed in

Section 5.2.4 and the obtained results are compared against a reference solution given in

the classical theory of elasticity. Finally, the elbow cantilever subject to point load and

prescribed rotation is analysed in Section 5.2.5. All the presented numerical examples

are modeled within the finite element analysis program FEAP [66] where the so-called

energy-convergence criterion ∆dT(qint − qext) ≤ tole is prescribed with tole = 10−16.

5.2.1 Derivation of non-linear analytical solution for a cantilever

beam subjected to pure bending

The pure bending state of a cantilever beam is a state of stress where a bending moment

which is applied to the beam does not produce any internal axial and/or shear forces, i.e.

the axis of the beam is bent into a circular curve. Consequently, the beam cross-sections

remain planar and perpendicular to the axis (and all the lines parallel with it) of the

beam. The problem is presented in Figure 5.2 and the following boundary conditions are

applied: all displacements and microrotation components in the plane x = 0 are equal to

zero and all displacements and microrotation components other than u, v and ϕz in the
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plane z = ∓ b
2

are equal to zero. Also, msz
p0

= hδ
6

. The micropolar linear analytical solution

of this problem is derived by Gauthier and Jahsman [1] and presented in Section 3.4.4.

In the existing literature to the best of our knowledge no non-linear micropolar analytical

solutions of this problem can be found and in this Section, such a solution is derived. A

full comprehension of the linear analytical solution by Gauthier and Jahsman applied to

the case of vanishing Poisson’s ratio (n = 0), as well as the standard nonlinear solution

for Euler elastica given below represent the basis for the development of this result.

Figure 5.2: Pure bending of a cantilever beam

5.2.1.1 Linear micropolar analytical solution for n = 0 (Gauthier and Jahs-

man [1])

This solution is given in (3.41) and (3.42) for arbitrary n and in the present special

case reads

ϕz =
1

1 + δ

Mzx

EIz
, (5.65)

u = − 1

1 + δ

Mzxy

EIz
, (5.66)

v =
1

1 + δ

Mzx
2

2EIz
, (5.67)

where Mz = p0Wz + mszA, A = bh, Wz =
bh2

6
, Iz =

bh3

12
, while δ = 24

(
lb
h

)2

=

6
β + γ

µh2
,
msz

p0h
=
δ

6
and E = 2µ. All the strain and curvature components are equal to zero

other than

εxx = −p0

µ

y

h
, (5.68)

κzx =
msz

β + γ
, (5.69)
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and all the stress and couple-stress components are equal to zero other than

σxx = −p0
2y

h
= − 1

1 + δ

Mz

Wz

2y

h
, (5.70)

µzx = msz =
δ

1 + δ

Mz

A
. (5.71)

5.2.1.2 Non-linear beam solution

This solution follows from the equilibrium

dϕz0
dx

=
Mz

EIz
, (5.72)

which shows that the beam reference axis turns into a circular arc of curvature
Mz

EIz
with

ϕz0 = ϕz(x, 0) =
Mzx

EIz
, (5.73)

u0 = u(x, 0) = −x+
EIz
Mz

sinϕz0 = −x+
EIz
Mz

sin
Mzx

EIz
, (5.74)

v0 = v(x, 0) =
EIz
Mz

(1− cosϕz0) =
EIz
Mz

(
1− cos

Mzx

EIz

)
. (5.75)

The deformation is illustrated in Figure 5.3 from where the following solution is obtained

ϕz =
Mzx

EIz
, (5.76)

u = u0 − y sinϕz =

(
EIz
Mz

− y
)

sin
Mzx

EIz
− x, (5.77)

v = v0 − y (1− cosϕz) =

(
EIz
Mz

− y
)(

1− cos
Mzx

EIz

)
, (5.78)

since in the beam theory the cross-sections remain rigid and for the present pure-bending

state they also remain orthogonal to the deformed beam axis. The lowest-order expansion

of the above displacements gives

u = −Mzxy

EIz
and v =

Mzx
2

2EIz
. (5.79)
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Figure 5.3: Deformation of a cantilever in pure bending

5.2.1.3 Non-linear micropolar analytical solution for n = 0

The existing analytical solutions given in 5.2.1.1 and 5.2.1.2 inspire us to assume that

in the micropolar elasticity the bending stiffness increases by the factor 1+δ in comparison

to the following micropolar non-linear pure-bending solution:

ϕz =
1

1 + δ

Mzx

EIz
, (5.80)

u =

(
(1 + δ)

EIz
Mz

− y
)

sin
Mzx

(1 + δ)EIz
− x, (5.81)

v =

(
(1 + δ)

EIz
Mz

− y
)(

1− cos
Mzx

(1 + δ)EIz

)
, (5.82)

where Mz = p0Wz + mszA is the resultant bending moment in which in the present

geometrically non-linear case it has to be recognised that the applied load traction p0 has

to stay orthogonal to the cross-section at all times, i.e. it ought to point in the direction

of

t1L = QLe1, (5.83)
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with QL =

cosϕzL − sinϕzL 0

sinϕzL cosϕzL 0

0 0 1

 as the rotation matrix of the cross-section at x = L.

Then, instead of the components px = −p0
2y

h
and py = 0 present in the linear analysis,

we now have px = −p0
2y

h
cosϕzL and py = −p0

2y

h
sinϕzL with ϕzL =

1

1 + δ

MzL

EIz
and

p0 =
1

1 + δ

Mz

Wz

, while msz =
δ

1 + δ

Mz

A
. Note that the presumed solution reduces to both

the linear micropolar solution in 5.2.1.1 for small ϕz (i.e. for the lowest-order expansion

of sinϕz and cosϕz) and the non-linear beam solution in 5.2.1.2 for vanishing micropolar

effects (δ = 0).

In order to check if this solution actually is the analytical solution sought, we use a

semi-inverse method, i.e. we check if it satisfies the governing equations of the problem

(4.72) and (4.73). Since in 2D the rotation matrix is

Q =

cosϕz − sinϕz 0

sinϕz cosϕz 0

0 0 1

 . (5.84)

and the deformation gradient F = GRADu + I is

F =


∂u

∂x
+ 1

∂u

∂y
0

∂v

∂x

∂v

∂y
+ 1 0

0 0 1

 . (5.85)

the Biot-like strain tensor E = QTF− I follows as

E =

E11 E12 0

E21 E22 0

0 0 0



=


cosϕz

(
∂u

∂x
+ 1

)
+ sinϕz

∂v

∂x
− 1 cosϕz

∂u

∂y
+ sinϕz

(
∂v

∂y
+ 1

)
0

− sinϕz

(
∂u

∂x
+ 1

)
+ cosϕz

∂v

∂x
− sinϕz

∂u

∂y
+ cosϕz

(
∂v

∂y
+ 1

)
− 1 0

0 0 0

 ,
(5.86)
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and the Biot-like curvature tensor K = QTGRADQ as

K =

 0 0 0

0 0 0

K31 K32 0

 =


0 0 0

0 0 0
∂ϕz
∂x

∂ϕz
∂y

0

 . (5.87)

By taking the partial derivatives of the presumed solution:

∂u

∂x
= −1 + cos

( x
R

)(
1− y

R

)
,

∂u

∂y
= − sin

( x
R

)
, (5.88)

∂v

∂x
= sin

( x
R

)(
1− y

R

)
,

∂v

∂y
= cos

x

R
− 1, (5.89)

∂ϕz
∂x

=
1

R
,

∂ϕz
∂y

= 0, (5.90)

where R = (1 + δ)
EI

Mz

, the strain tensor and the curvature tensor turn into

E =

−
y
R

0 0

0 0 0

0 0 0

 , K =

0 0 0

0 0 0
1
R

0 0

 , (5.91)

and the non-zero components of the stress tensor and the couple-stress tensor turn into

B11 = (λ+ 2µ)E11 = − 1

1 + δ

Mz

Wz

2y

h
, (5.92)

G31 = (β + γ)K31 =
δ

1 + δ

Mz

A
, (5.93)

which obviously satisfy the non-linear differential equilibrium equations (4.72) and (4.73).

Finally, we analyse the boundary conditions (QB)N = PS, (QG)N = MS at x = L

and obtain cosϕzB11 0 0

sinϕzB11 0 0

0 0 0




1

0

0

 =


PS1

PS2

0

 ⇒
PS1 = cosϕLB11,

PS2 = sinϕLB11,
(5.94)

 0 0 0

0 0 0

G31 0 0




1

0

0

 =


0

0

MS3

 ⇒ MS3 = G31, (5.95)

i.e.

PS1 = − 1

1 + δ

Mz

Wz

cosϕL
2y

h
= −p0

2y

h
cosϕL, (5.96)
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PS2 = − 1

1 + δ

Mz

Wz

sinϕL
2y

h
= −p0

2y

h
sinϕL, (5.97)

MS3 =
δ

1 + δ

Mz

A
= msz, (5.98)

which satisfies the boundary conditions applied.

In this way we have derived a possible micropolar non-linear solution for the cantilever

beam problem subject to pure bending.

5.2.2 Non-linear cantilever beam subject to pure bending

In order to test the accuracy of the newly presented nonlinear finite elements Hex8NL

and Hex27NL we model a thin cantilever beam (with height to length ratio
h

L
≤ 0.01)

subject to pure bending as shown in Figure 5.4 and observe its nonlinear behavior. The

chosen geometry of the cantilever is L = 10 m, h = 0.1 m and b = 1 m, and, in order to

capture the size-effect the value of the characteristic length is varied in the region lb ∈
[0.01, 0.08]. The resultant bending moment chosen as Mz = 0.01π Nm is applied through

a linearly varying surface loading PS1 and a constant surface moment loading MS3 in

the proportion defined in equation (3.38), which has to be strictly respected in order to

obtain a pure bending state. In addition, the linearly varying surface loading PS1 has to be

applied as a follower load, i.e. it has to remain orthogonal to the cantilever cross-section

during the whole deformation process. The analytical values of the loading magnitudes p0

and MS3 for different lb are presented in Table 5.1. The distributed loadings (5.96)-(5.98)

are applied through corresponding concentrated nodal forces and moments obtained by

integration as defined by (3.1)-(3.4).

Figure 5.4: Thin cantilever beam subject to bending

The engineering material parameters are taken as E = 1200 N/m2 and n = 0.0 which

give the Lamé constants µ = 600 N/m2 and λ = 0 N/m2. The parameter ν is chosen

to be equal to ν = 200 N/m2, corresponding to N = 0.5, but in this example it can

have an arbitrary value since it does not affect the solution. The remaining engineering
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parameters which exist only in the 3D analysis are chosen as ψ = 0 and lt = 0.02 m, but,

since they also do not affect the solution, they can also have arbitrary values. Along the

left-hand edge of the specimen all the displacements and microrotations are restrained,

i.e. u1(0, y, z) = u2(0, y, z) = u3(0, y, z) = ϕ1(0, y, z) = ϕ2(0, y, z) = ϕ3(0, y, z) = 0,

for y ∈ [0, h] and z ∈ [0, b]. Furthermore, the cylindrical bending is accomplished by

additionally restraining the displacements in the z direction along the whole cantilever,

i.e. u3(x, y, z) = 0 for x ∈ [0, L], y ∈ [0, h] and z ∈ [0, b].

Table 5.1: Analytical values of the external loadings P0 and MS3 in the undeformed
configuration as defined in (3.39) for different values of the characteristic length lb,

n = 0.0, h = 0.1, together giving the total external moment M = 0.01π Nm

lb/h lb β + γ p0 MS3

0.1 0.01 0.24 15.201 254 775 434 490 0.060 805 019 101 737 940

0.2 0.02 0.96 9.617 120 368 132 020 0.153 873 925 890 112 300

0.4 0.04 3.84 3.894 536 347 425 364 0.249 250 326 235 223 300

0.8 0.08 15.36 1.152 173 344 837 332 0.294 956 376 278 357 100

First, the problem is solved using a mesh of 64 hexahedral finite elements Hex8NL and

Hex27NL propagating in the x direction. The obtained numerical results for the horizontal

and vertical displacements u1 and u2 and microrotation ϕ3 at node P (10.0, 0.1, 1.0) using

both elements are compared against the analytical solution derived in Section 5.2.1. The

results obtained using the Hex8NL element are shown in Table 5.2, while the results

obtained using the Hex27NL element are shown in Table 5.3.

Table 5.2: Results in node P = (10.0, 0.1, 1.0) obtained using 64× 1× 1 Hex8NL
elements, A = Analytical, N = Numerical, LS = Number of load steps

lb LS
A N A N A N

niter
CPU

u1 u1 u2 u2 ϕ3 ϕ3 time

0.01 1 -7.774 -1.927 7.096 4.923 2.534 1.094 18 2 sec

0.02 1 -3.814 -1.268 6.387 4.088 1.603 0.876 14 1.5 sec

0.04 1 -0.718 -0.412 3.123 2.376 0.650 0.486 11 1 sec

0.08 1 -0.071 -0.059 0.956 0.870 0.192 0.175 5 0.5 sec
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Table 5.3: Results in node P = (10.0, 0.1, 1.0) obtained using 64× 1× 1 Hex27NL
element, A = Analytical, N = Numerical, LS = Number of load steps

lb LS
A N A N A N

niter
CPU

u1 u1 u2 u2 ϕ3 ϕ3 time

0.01 5 -7.774 -7.773 7.096 7.096 2.534 2.533 5*11 4 min 09 sec

0.02 2 -3.814 -3.814 6.387 6.387 1.603 1.603 2*14 2 min 38 sec

0.04 1 -0.718 -0.718 3.123 3.123 0.649 0.649 12 57 sec

0.08 1 -0.071 -0.071 0.956 0.956 0.192 0.192 6 30 sec

As in the linear analysis, it is again observed that, by increasing the value of the

characteristic length, the cantilever becomes stiffer. Hex8NL shows quite poor results,

especially for small micropolar effects, which is also observed in the linear analysis, while

Hex27NL shows results which are in agreement with the derived analytical results in three

significant digits. For the Hex8NL element, the finite element mesh is further refined to

1024 and 2048 elements and the obtained results are presented in Tables 5.4 and 5.5.

The analytical result is approached in all the observed results, and for the mesh of 2048

elements the accuracy is achieved in two significant digits. The deformed configuration

for the softest configuration (lb = 0.01) for different load steps obtained by 64 Hex27NL

finite element is shown in Figure 5.5.

Table 5.4: Results in node P = (10.0, 0.1, 1.0) obtained using 1024× 1× 1 Hex8NL
element, A = Analytical, N = Numerical, LS = Number of load steps

lb LS
A N A N A N niter CPU

u1 u1 u2 u2 ϕ3 ϕ3 time

0.01 5 -7.774 -7.721 7.096 7.103 2.534 2.521 5*11 73 min 13 sec

0.02 2 -3.814 -3.793 6.387 6.376 1.603 1.598 16+26 51 min 22 sec

0.04 1 -0.718 -0.716 3.123 3.120 0.650 0.648 11 11 min 19 sec

0.08 1 -0.071 -0.071 0.956 0.956 0.192 0.192 6 5 min 14 sec
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Table 5.5: Results in node P = (10.0, 0.1, 1.0) obtained using 2048× 1× 1 Hex8NL
element, A = Analytical, N = Numerical, LS = Number of load steps

lb LS
A N A N A N niter CPU

u1 u1 u2 u2 ϕ3 ϕ3 time

0.01 5 -7.774 -7.776 7.096 7.097 2.534 2.530 5*11 524 min 44 sec

0.02 5 -3.814 -3.809 6.387 6.385 1.603 1.602 5*9 428 min 34 sec

0.04 1 -0.718 -0.717 3.121 3.121 0.650 0.649 11 103 min 45 sec

0.08 1 -0.071 -0.071 0.956 0.956 0.192 0.192 5 45 min 08 sec

By introducing the follower loads (i.e. keeping the nodal forces orthogonal to the

cantilever cross-section during the whole deformation process), the external loading ceases

to be constant, since it becomes dependent on the orientation matrix Q. Consequently,

when linearizing the residual ge = qint,e − qext,e in equation (5.12), the linearized non-

constant external loading becomes non-zero and also contributes to the element stiffness

matrix Ke in equation (5.46). For each loaded node i the contribution of the linearized

external force vector thus follows as

Ke
EXTij = δij

[
0 QiFi

∧

0 0

]
, (5.99)

where Qi represent the nodal orientation matrix, Fi the nodal force vector and 0 is a

3×3 zero matrix and the summation convention does not apply. The ij block of the

element stiffness matrix Ke is then computed as
[
Ke
ij

]
=
[
KM

e
ij

]
+
[
KG

e
ij

]
+ [Ke

EXTi]. It

is very important to take this into account in order to keep the quadratic convergence

rate during the Newton-Raphson solution procedure. In order to demonstrate this, the

problem is solved using 64 Hex8NL and 64 Hex27NL finite elements for lb = 0.02. The

convergence rate using both elements with and without Ke
EXTij is given in Tables 5.6 and

5.7. We can see that without proper linearization of the residual, the number of iterations

increases from 14 to 19 for both elements.. Moreover, the quadratic convergence rate of

the Newton-Raphson method is lost, in contrast to the case when Ke
EXTij is taken into

account. However, in both cases we converge to the same solution, as expected. All the

examples presented in Tables 5.3, 5.4 and 5.5 are solved with proper linearization of the

residual which is manifested in the presence of the quadratic convergence rate.
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Table 5.6: Convergence rate of the Newton-Raphson scheme using 64 Hex8NL elements
for lb = 0.02; absolute norm of the residual and energy

with Ke
EXTij without Ke

EXTij

It Residual Energy Residual Energy

0 1.60·10−1 2.75·10−2 1.60·10−1 2.75·10−2

1 2.25·102 6.17·101 2.25·102 6.17·101

2 3.36·101 2.75·100 3.36·101 2.75·100

3 3.00·100 2.25·10−2 3.05·101 2.44·10−2

4 9.41·10−1 3.28·10−3 9.67·10−1 3.79·10−3

5 2.10·100 5.32·10−3 2.34·100 6.40·10−3

6 4.92·10−1 3.69·10−4 5.05·10−1 3.83·10−4

7 6.46·10−2 3.30·10−4 5.98·10−2 2.08·10−4

8 9.23·10−1 9.26·10−4 9.91·10−1 1.06·10−3

9 3.42·10−3 1.59·10−4 2.90·10−3 8.68·10−5

10 8.62·10−1 7.99·10−4 8.67·10−1 8.08·10−4

11 5.75·10−5 4.73·10−7 3.56·10−5 1.84·10−7

12 2.73·10−3 8.04·10−9 1.99·10−3 4.37·10−9

13 6.76·10−10 4.88·10−17 3.66·10−6 2.46·10−11

14 3.70·10−6 3.60·10−14

15 8.72·10−8 3.28·10−15

16 4.25·10−8 7.06·10−18

17 1.51·10−9 4.52·10−19
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Table 5.7: Convergence rate of the Newton-Raphson scheme using 64 Hex27NL elements
for lb = 0.02 and load increment 1 ; absolute norm of the residual and energy

with Ke
EXTij without Ke

EXTij

It Residual Energy Residual Energy

0 8.02·10−2 1.25·10−2 8.02·10−2 1.25·10−2

1 1.45·102 4.37·101 1.45·102 4.37·101

2 1.41·101 9.29·10−1 1.41·101 9.29·10−1

3 3.50·100 3.10·10−2 3.73·100 3.50·10−2

4 1.90·100 9.90·10−3 2.19·100 1.26·10−2

5 6.80·100 8.94·10−2 7.39·100 1.05·10−1

6 5.87·10−1 6.76·10−4 6.55·10−1 8.34·10−4

7 1.37·10−2 2.86·10−4 1.34·10−2 2.02·10−4

8 1.48·100 4.19·10−3 1.67·100 5.31·10−3

9 4.57·10−4 6.95·10−5 4.11·10−4 4.46·10−5

10 5.91·10−1 6.67·10−4 6.40·10−1 7.84·10−4

11 2.98·10−6 2.21·10−9 1.89·10−5 1.92·10−9

12 1.89·10−5 6.84·10−13 2.78·10−5 2.67·10−12

13 6.14·10−12 4.38·10−26 4.19·10−7 1.33·10−12

14 5.80·10−7 5.08·10−15

15 3.17·10−8 1.44·10−15

16 1.90·10−8 1.13·10−17

17 1.59·10−9 1.65·10−18

18 6.43·10−10 2.10·10−20
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(a) No loading (b) Load step 1

(c) Load step 2 (d) Load step 3

(e) Load step 4 (f) Load step 5

Figure 5.5: Deformed configuration of the cantilever beam for lb = 0.01 for different load
steps obtained using a mesh of 64× 1× 1 Hex27NL elements
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5.2.3 T-shaped structure subject to bending and torsion

In this example a T-shaped structure shown in Figure 5.6 subject to bending and

torsion moments is modelled. This structure is presented in [96] in the framework of

the classical theory, and in [49] in the framework of the micropolar theory, which is

also the only geometrically nonlinear numerical example without the material nonlin-

earity effects solved using micropolar finite elements with large displacements and large

rotations we have been able to find in the literature. In [49], however, only the ob-

tained deformed configurations for selected load steps are plotted, without any numerical

results for displacements and/or microrotations. The micropolar material parameters

are here taken as in [49], i.e. µ = 10 500 N/mm2, λ = 15 750 N/mm2, ν = 3 500

N/mm2, α = 0 N, β = 52.5 N and γ = 52.5 N , which corresponds to the following

engineering material parameters: E = 27 300 N/mm2, n = 0.3, N = 0.5, lb = 0.05

mm, lt =
√

2lb, ψ = 0. The rib of the structure is submitted to a resultant torsional

moment M1 at the free end and both ends of the flange are submitted to a resultant

bending moments M2 chosen in the same proportion as in [49], i.e. M1

M2
= 8

15
while the

material points in the plane where the rib touches the flange are completely fixed. The

problem is modelled using two sets of different moment values chosen as M1 = 1200

Nmm, M2 = 2250 Nmm and M1 = 600 Nmm, M2 = 1125 Nmm. The chosen val-

ues of the applied moments differ from the ones specified in [49] (M1 = 300 000 and

M2 = 562 500), which produce a deformation that is way above the theoretical predic-

tions. The order of magnitude of moments chosen here correspond to the ones defined in

[96]. The resultant moments are assumed to follow from a constant distributed surface

moment loads and are thus applied through corresponding concentrated nodal moments

obtained by integration as defined by (3.1)-(3.4). The structure is clamped at the points

between the rib and the flange, i.e. all the displacements and microrotations are restrained

(u1(x, 1, z) = u2(x, 1, z) = u3(x, 1, z) = ϕ1(x, 1, z) = ϕ2(x, 1, z) = ϕ3(x, 1, z) = 0, for x ∈
[5, 6] and z ∈ [0, 1]). The domain is discretised using 21 cube-shaped elements as shown

in Figure 5.7. First the torsional load is applied in 20 equal load increments, keeping

the flange free of any loading. Then, the two bending moments M2 are applied at each

end of the flange in another 20 equal load increments, while the torsional moment is

kept constant. The displacements and microrotations at the nodes P1 = (0.0, 1.0, 1.0),

P2 = (11.0, 1.0, 1.0), P3 = (5.0, 11.0, 1.0) and P4 = (6.0, 11.0, 1.0) obtained using both the

Hex8NL and Hex27NL elements are shown in Tables 5.8 and 5.9 for M1 = 1200 Nmm,

M2 = 2250 Nmm and in Tables 5.10 and 5.11 for M1 = 600 Nmm, M2 = 1125 Nmm.

Note that the rotations of the points at the edges of the flange in the xy plane obtained

using the Hex27NL elements are in the order of magnitude of
M2l

EI
for l = 5 mm and

I = 0.83̇ mm4, while the rotations of the points at the edge of the rib around the y axis
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obtained using the same element are in the order of magnitude of
M1L

GIt
for L = 10 mm,

G =
E

2(1 + n)
and It ≈ 0.141 mm4.

Figure 5.6: Top view of the T-shape structure [49]

Figure 5.7: Finite element mesh of the T-shape structure

The various stages of deformation of the T-shape structure are presented in Figures 5.8

and 5.10 for Hex8NL and in Figures 5.9 and 5.11 for Hex27NL. In the present formulation

the elements are not checked against and prevented from penetrating one another, which

is present in the final configurations in Figure 5.9.
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Table 5.8: Results obtained using 21× 1× 1 Hex8NL elements for M1 = 1200 Nmm,
M2 = 2250 Nmm in the last load step

Node u1 u2 u3 ϕ1 ϕ2 ϕ3

P1 4.8248 -4.4767 -9.3183 ·10−3 -1.9970 ·10−2 -1.8987 ·10−2 3.4405

P2 -4.8248 -4.4767 -9.3183 ·10−3 -1.9970 ·10−2 1.8987 ·10−2 -3.4405

P3 -1.5678 ·10−1 1.2410 ·10−2 -1.7078 ·10−1 -1.5980 ·10−3 6.2279 1.6213 ·10−2

P4 -1.7078 ·10−1 1.2410 ·10−2 1.5678 ·10−1 1.6213 ·10−2 6.2279 1.5980 ·10−3

Table 5.9: Results obtained using 21× 1× 1 Hex27NL elements for M1 = 1200 Nmm,
M2 = 2250 Nmm in the last load step

Node u1 u2 u3 ϕ1 ϕ2 ϕ3

P1 6.2540 -5.0208 ·10−1 -8.1916 ·10−3 -1.5776 ·10−2 -1.2772 ·10−2 6.3059

P2 -6.2540 -5.0208 ·10−1 -8.1916 ·10−3 -1.5766 ·10−2 -1.2772 ·10−2 -6.3059

P3 4.2582 ·10−2 -2.6253 ·10−2 7.9328 ·10−2 1.0446 ·10−2 6.9310 8.2121 ·10−3

P4 7.9328 ·10−2 -2.6253 ·10−2 -4.2582 ·10−2 8.2121 ·10−3 6.9310 -1.0446 ·10−2

Table 5.10: Results obtained using 21× 1× 1 Hex8NL elements for M1 = 600 Nmm,
M2 = 1125 Nmm in the last load step

Point u1 u2 u3 ϕ1 ϕ2 ϕ3

P1 1.2182 -3.6278 -1.1277 ·10−2 -1.4940 ·10−2 -5.2237 ·10−3 1.7303

P2 -1.2182 -3.6278 -1.1277 ·10−2 -1.4940 ·10−2 5.2237 ·10−3 -1.7303

P3 1.0335 2.7191 ·10−3 -9.7484 ·10−1 -4.5819 ·10−2 3.2176 -4.5027 ·10−2

P4 -9.7484 ·10−1 2.7191 ·10−3 -1.0335 -4.5027 ·10−2 3.2176 4.5819 ·10−2

Table 5.11: Results obtained using 21× 1× 1 Hex27NL elements for M1 = 600 Nmm,
M2 = 1125 Nmm in the last load step

Point u1 u2 u3 ϕ1 ϕ2 ϕ3

P1 3.6130 -4.5842 -1.0906 ·10−2 -1.5587 ·10−2 -1.8711 ·10−2 3.0388

P2 -3.6130 -4.5842 -1.0906 ·10−2 -1.5587 ·10−2 -1.8711 ·10−2 -3.0388

P3 1.0051 -6.7156 ·10−3 -1.0078 -4.0736 ·10−2 3.4236 -4.2163 ·10−2

P4 -1.0078 -6.7156 ·10−3 -1.0051 -4.2163 ·10−2 3.4236 4.0736 ·10−2
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(a) Load step 5 (b) Load step 10

(c) Load step 15 (d) Load step 20

(e) Load step 25 (f) Load step 30

(g) Load step 35 (h) Load step 40

Figure 5.8: Deformed configuration of the T-shape structure for different load steps
obtained using 21× 1× 1 Hex8NL for M1 = 1200 Nmm, M2 = 2250 Nmm
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(a) Load step 5 (b) Load step 10

(c) Load step 15 (d) Load step 20

(e) Load step 25 (f) Load step 30

(g) Load step 35 (h) Load step 40

Figure 5.9: Deformed configuration of the T-shape structure for different load steps
obtained using a mesh of 21× 1× 1 Hex27NL elements, M1 = 1200 Nmm, M2 = 2250

Nmm
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(a) Load step 5 (b) Load step 10

(c) Load step 15 (d) Load step 20

(e) Load step 25 (f) Load step 30

(g) Load step 35 (h) Load step 40

Figure 5.10: Deformed configuration of the T-shape structure for different load steps
obtained using a mesh of 21× 1× 1 Hex8NL elements for M1 = 600 Nmm, M2 = 1125

Nmm
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(a) Load step 5 (b) Load step 10

(c) Load step 15 (d) Load step 20

(e) Load step 25 (f) Load step 30

(g) Load step 35 (h) Load step 40

Figure 5.11: Deformed configuration of the T-shape structure for different load steps
obtained using a mesh of 21× 1× 1 Hex27NL elements for M1 = 600 Nmm, M2 = 1125

Nmm
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5.2.4 45◦ curved cantilever bend

In the previous two examples only predominantly two-dimensional problems have been

analysed. Since we have implemented a fully geometrically non-linear formulation capable

of describing large 3D rotations, it is essential to test the elements in an appropriate

example in which there exist large rotation components in all three dimensions. One

such example is the problem of a curved cantilever beam with out-of-plane loading first

presented by Bathe and Bolourchi [97] and very often analysed in the framework of the

classical elasticity (see e.g. [96]). However, no literature is found in which this problem

has been modelled in the framework of the 3D micropolar elasticity. Here, we take this

problem in order to test the three-dimensional large rotation performance of the derived

micropolar finite elements.

The beam lies in a horizontal plane and is curved by a radius of R = 100 and angle

of 45◦, i.e. it represents one eighth of a circle, as shown in Figure 5.12. The cantilever is

loaded normally to that plane at the free end by a constant distributed surface loading

in the x3 direction p3 = 600 along the square-shaped cross-section of the side a = 1. The

distributed surface loading is applied through corresponding concentrated nodal forces

obtained by integration as defined by (3.1)-(3.4) in a number of load increments. The can-

tilever is clamped at the left-hand side end, i.e. all the displacements and microrotations

are restrained (u1(0, x2, x3) = u2(0, x2, x3) = u3(0, x2, x3) = ϕ1(0, x2, x3) = ϕ2(0, x2, x3) =

ϕ3(0, x2, x3) = 0, for x2 ∈ [R− 0.5a,R + 0.5a], and x3 ∈ [0, a]).

First, in order to compare the obtained results against a reference solution of the

classical theory, Lamé constants are taken as in [96], i.e. µ = 5 · 106, λ = 0, while the

micropolar parameters are taken as very small (but ν, β, γ necessarily larger than zero in

order to satisfy the condition of the positiveness of strain energy). It is important to note

that, as observed in all the numerical examples already analysed, the bigger the micropolar

parameters are, the stiffer the structure is. Thus, even for small micropolar parameters,

we expect a bit stiffer behavior of the micropolar problem, compared against the classical

elasticity model. The remaining material parameters are chosen as ν = 50 505.1, α = 0,

β = 12 500 and γ = 37 500, which correspond to the following engineering material

parameters: E = 107, n = 0.0, N = 0.1, lb = 0.05, lt = 0.05, ψ = 0. This problem

is in [96] modelled by using a mesh of 16 solid elements with 8 nodes enhanced by the

incompatible modes. The obtained results in nodes P1 = (70.357, 70.357, 0.0), P2 =

(71.064, 71.064, 0.0), P3 = (70.357, 70.357, 1.0) and P4 = (71.064, 71.064, 1.0) are then

averaged and the reference solution for the displacements u1, u2 and u3 is given. Here,

the obtained results using Hex8NL and Hex27NL elements for different mesh densities are

compared against the results in [96] and presented in Table 5.12 for Hex8NL and in Table

5.13 for Hex27NL. We can see that the results converge towards the reference solution

with both h- and p-refinement.
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From Table 5.13c we can see that the results obtained using Hex27NL are very close

to the results obtained using the classical theory of elasticity for the same mesh density.

However, due to the presence of the micropolar effects, the structure is slightly stiffer, as

expected. As already observed in other numerical examples in both linear and nonlinear

regime, the first order element Hex8NL shows quite poor results for a coarse mesh, which is

here shown in Table 5.12a. However, by refining the mesh, the obtained results are getting

closer to the reference result [96]. To verify the correct implementation of the discrete

Newton-Raphson solution procedure, the evolution of the residual and energy norms have

been observed. The solution procedure in the limit gives a quadratic convergence rate for

both elements in all load steps. The residual and energy norms for both elements and an

arbitrarily chosen load step are presented in Tables 5.14 and 5.15.

Figure 5.12: Top view of the curved cantilever beam
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Table 5.12: Results obtained using Hex8NL elements

(a) 16× 1× 1 Hex8NL elements

LS Node u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−2 ϕ3 · 10−2

1 P1 -1.28 1.91 16.06 -5.08 -6.06 -3.56

P2 -1.24 1.80 15.76 -5.08 -6.06 -3.57

P3 -1.32 2.40 15.93 -5.08 -6.06 -3.57

P4 -1.28 2.29 15.63 -5.08 -6.06 -3.57

Averaged results -1.28 2.10 15.85 -5.08 -6.06 -3.57

Ref. solution [96] -23.30 13.64 53.21 - - -

(b) 128× 1× 1 Hex8NL elements

LS Node u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

4 P1 -19.60 11.38 50.21 -5.64 -9.08 2.40

P2 -19.72 11.46 50.40 -5.65 -9.07 2.45

P3 -20.35 11.83 49.69 -5.63 -9.08 2.37

P4 -20.47 11.91 49.89 -5.65 -9.07 2.52

Averaged results -20.04 11.65 50.04 -5.64 -9.08 2.44

Ref. solution [96] -23.30 13.64 53.21 - - -

(c) 256× 1× 1 Hex8NL elements

LS Node u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

10 P1 -21.53 12.48 52.20 -5.67 -9.66 4.78

P2 -21.68 12.58 52.42 -5.67 -9.66 4.77

P3 -22.32 12.91 51.64 -5.67 -9.66 4.78

P4 -22.48 13.00 51.85 -5.67 -9.66 4.77

Averaged results -22.00 12.74 52.03 -5.67 -9.66 4.78

Ref. solution [96] -23.30 13.64 53.21 - - -

*LS - number of load steps
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Table 5.13: Results obtained using Hex27NL elements

(a) 6× 1× 1 Hex27NL elements

LS Node u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

5 P1 -16.30 14.15 47.87 -5.48 -9.04 9.38

P2 -16.47 14.26 48.05 -5.49 -9.03 9.33

P3 -17.07 14.55 47.37 -5.48 -9.04 9.39

P4 -17.24 14.67 47.54 -5.49 -9.03 9.35

Averaged results -16.77 14.50 47.63 -5.48 -9.04 9.36

Ref. solution [96] -23.30 13.64 53.21 - - -

(b) 12× 1× 1 Hex27NL elements

LS Node u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

7 P1 -21.60 12.94 52.31 -5.64 -9.81 5.74

P2 -21.77 13.05 52.53 -5.64 -9.81 5.73

P3 -22.40 13.36 51.74 -5.64 -9.81 5.75

P4 -22.57 13.47 51.95 -5.64 -9.81 5.73

Averaged results -22.09 13.21 52.13 -5.64 -9.81 5.74

Ref. solution [96] -23.30 13.64 53.21 - - -

(c) 16× 1× 1 Hex27NL elements

LS Node u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

7 P1 -22.05 12.85 52.70 -5.65 -9.87 5.56

P2 -22.22 12.96 52.92 -5.65 -9.87 5.58

P3 -22.86 13.27 52.12 -5.65 -9.87 5.58

P4 -23.03 13.37 52.34 -5.65 -9.87 5.57

Averaged results -22.54 13.11 52.52 -5.65 -9.87 5.57

Ref. solution [96] -23.30 13.64 53.21 - - -

*LS - number of load steps

168



Table 5.14: Convergence rate of the Newton-Raphson scheme for the mesh of 256
Hex8NL elements for load increment 1 ; absolute norm of the residual and energy

It Residual Energy

0 3.0·101 6.22·102

1 6.34·105 2.52·105

2 1.27·104 2.32·103

3 5.67·103 1.43·101

4 9.51·100 3.11·10−2

5 3.68·101 7.24·10−4

6 3.64·10−3 6.65·10−9

7 8.72·10−6 3.77·10−17

Table 5.15: Convergence rate of the Newton-Raphson scheme for the mesh of 16
Hex27NL elements for load increment 6 ; absolute norm of the residual and energy

It Residual Energy

0 4.28·101 3.34·102

1 5.05·105 1.82·104

2 3.64·102 3.76·100

3 4.98·103 1.79·100

4 5.21·10−2 1.21·10−3

5 5.89·10−3 2.26·10−12

6 1.16·10−6 3.66·10−20

Next, we vary the micropolar material parameters and observe the behavior of the

curved beam using both Hex8NL and Hex27NL for a fine mesh of 256 Hex8NL and 16

Hex27NL elements. First, the following five micropolar parameters are kept as previously

defined, i.e. µ = 5 · 106, λ = 0., α = 0, β = 12 500 and γ = 37 500 and the value

of the coupling number N ∈ {0.1, 0.5, 0.9} is varied. Remember that N can obtain

values between 0 and 1. The results in node P1 are presented in Tables 5.16 and 5.17.

Both elements show that by increasing the value of the coupling number, the values of

displacements reduce. However, even for N = 0.9, quite close results to the case with the

smallest value of N are obtained, leading to the conclusion that N does not significantly

affect the solution. Interestingly, the solution does become more robust with an increase

in N , i.e. a converged solution has been obtained in fewer load steps.
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Table 5.16: Results obtained using 256× 1× 1 Hex8NL while varying the value of the
coupling number N

LS N ν · 106 u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

10 0.1 0.0505051 -21.53 12.48 52.20 -5.67 -9.66 4.78

8 0.5 1.66667 -21.15 12.27 51.83 -5.65 -9.56 4.46

5 0.9 21.3158 -18.74 10.89 49.27 -5.60 -8.82 1.78

Table 5.17: Results obtained using 16× 1× 1 Hex27NL while varying the value of the
coupling number N

LS N ν · 106 u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

7 0.1 0.0505051 -22.05 12.85 52.70 -5.65 -9.87 5.56

5 0.5 1.66667 -21.89 12.76 52.55 -5.63 -9.84 5.60

5 0.9 21.3158 -21.81 12.73 52.48 -5.58 -9.85 5.95

Next, we fix another set of five micropolar parameters, i.e. we take µ = 5 · 106, λ = 0.,

ν = 50 505.1, β = 12 500 and γ = 37 500 (which correspond to E = 107, n = 0.0,

lb = 0.05, lt = 0.05, N = 0.1) and vary the value of the polar ratio ψ ∈ {0.0, 0.7, 1.4},
which otherwise ranges between 0 and 1.5. The results are presented in Tables 5.18 and

5.19.

Table 5.18: Results in node P1 obtained using 256× 1× 1 Hex8NL, while varying the
value of the polar ratio ψ

LS ψ α u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

10 0.0 0.0 -21.53 12.48 52.20 -5.67 -9.66 4.78

10 0.7 10 714.3 -21.52 12.48 52.20 -5.67 -9.66 4.81

15 1.4 -7142.86 -21.54 12.48 52.21 -5.68 -9.66 4.71
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Table 5.19: Results in node P1 obtained using 16× 1× 1 Hex27NL, while varying the
value of the polar ratio ψ

LS ψ α u1 u2 u3 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

7 0.0 0.0 -22.05 12.85 52.70 -5.65 -9.87 5.56

7 0.7 10 714.3 -22.05 12.85 52.69 -5.64 -9.87 5.61

7 1.4 -7142.86 -22.06 12.85 52.70 -5.65 -9.86 5.53

From Tables 5.18 and 5.19 we can see that the influence of the increase in the polar

ratio on the obtained numerical results is even more negligible than that of the coupling

number. However, for Hex8NL it influences the robustness of the solution procedure

adversely, since 5 more load increments are needed in order to obtain convergence.

Next we analyse the problem using the original set of micropolar material parameters

with a coarse mesh of either elements using different load incrementation and present the

results in Tables 5.20 and 5.21. By increasing the number of load increments it is observed

that the results are path dependent, i.e. different solution is obtained by using different

number of load increments, as shown in Tables 5.20 and 5.21. Furthermore, it is observed

that the difference between the obtained results is decreased by increasing the number of

load steps. Moreover, it is observed that the influence of the path dependence decreases

by refining the finite element mesh.
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Table 5.20: Results obtained using Hex8NL elements in node P1

(a) 2× 1× 1 Hex8NL

LS u1 · 10−2 u2 · 10−2 u3 ϕ1 · 10−1 ϕ2 · 10−2 ϕ3 · 10−3

1 3.22380217 8.96615334 1.74092068 -1.03530509 1.84385002 -0.66557417

2 3.22676004 8.97012158 1.74111321 -1.03573693 1.80196104 0.47039203

5 3.22705926 8.97031812 1.74114303 -1.03575263 1.79484997 1.17387104

10 3.22707549 8.97031665 1.74114503 -1.03577725 1.79347336 1.18231451

20 3.22707481 8.97030970 1.74114528 -1.03578291 1.79319065 1.17890116

(b) 6× 1× 1 Hex8NL

LS u1 · 10−2 u2 u3 ϕ1 · 10−1 ϕ2 · 10−2 ϕ3 · 10−2

1 -1.54324172 1.09651610 8.38923296 -4.28271918 6.67664458 -1.16604438

2 -1.54331271 1.09651335 8.38924174 -4.27986499 6.86755695 -1.14437321

5 -1.54330559 1.09651097 8.38923862 -4.27908140 6.91957968 -1.12668659

10 -1.54330942 1.09651068 8.38923850 -4.27899174 6.92523667 -1.12570753

20 -1.54331048 1.09651060 8.38923846 -4.27896957 6.92662771 -1.12542920

Table 5.21: Results obtained using Hex27NL elements in node P1

(a) 2× 1× 1 Hex27NL elements

LS u1 u2 · 101 u3 · 101 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−1

3 -1.08925956 1.87489260 3.04600207 -4.89368066 -5.70177365 2.90681231

5 -1.08907145 1.87484513 3.04595205 -4.81874622 -5.85796503 2.92898286

10 -1.08905931 1.87485319 3.04595412 -4.82084221 -5.84180543 3.08608508

20 -1.08912083 1.87485184 3.04596409 -4.80630082 -5.85892294 3.09886429

(b) 6× 1× 1 Hex27NL elements

LS u1 · 101 u2 · 101 u3 · 101 ϕ1 · 10−1 ϕ2 · 10−1 ϕ3 · 10−2

4 -1.63027650 1.41467267 4.78738606 -5.20977432 -8.84584561 7.67777834

5 -1.63018568 1.41468357 4.78733127 -5.48391877 -9.03790569 9.37819012

10 -1.63018550 1.41468445 4.78733128 -5.46593568 -9.04844694 9.43080561

20 -1.63018576 1.41468368 4.78733127 -5.46178681 -9.05091989 9.44184672
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5.2.5 Elbow cantilever subject to point load and prescribed ro-

tation - detection of non-invariance

The last numerical example analysed was first presented in [98] in the framework of

the geometrically exact 3D beam theory. In this example an in-plane rectangular elbow

cantilever subject to out-of-the-plane vertical loading at its free end and a prescribed

rotation at its fixed end is analysed, as shown in Figure 5.13. The frame is composed of

two equally long mutually perpendicular legs, with a square cross section and axial length

L = 10. At the free end of the cantilever, a surface load p3 = 5.0 is applied in the negative

z direction. The relation between the cross-sections and length of the elbows is
L

h
≈ 103

given in [98], which in this 3D analysis represents a problem due to the big aspect ratio

of the 3D finite elements. Consequently, in this work we choose a square cross-section of

height and width h = b = 1, i.e. with a cross-section area A = 1. The geometry of the

problem is presented in Figure 5.14. The material parameters are chosen as E = 2 · 104

and n = 0.0 which give Lamé constants µ = 10 000 and λ = 0. The remaining micropolar

material parameters are taken as very small (but again ν, β, γ necessarily larger than

zero in order to satisfy that the strain energy should remain positive): ν = 101.01, α = 0,

β = 25 and γ = 75, which correspond to the following engineering material parameters

N = 0.1, lb = 0.05, lt = 0.05, ψ = 0.

Figure 5.13: Elbow cantilever subject to a fixed loading in the z direction and a
prescribed rotation around x axis
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Figure 5.14: Top view: Geometry of the elbow cantilever

The problem is first solved with Hex27NL elements, which make a mesh with nodes

which lie on the elbow axis, which facilitates the analysis and discussion. For Hex27NL

the external loading on the free end is first applied as a concentrated force F = 5 in the

central node with coordinates N1(−10, 10, 0). The junction between the legs is modelled

as one cube-shaped finite element, while the number of elements in each leg is varied

equally for each leg from one to ten. The obtained displacements in the central node of

the free end for different mesh densities are presented in Table 5.22, where a clear trend

towards a converged solution with h-refinement is observed.

Table 5.22: Tip displacements u1, u2 and u3 in node N1(−10, 10, 0) after applying the
surface loading p3 = 5 in one load step using Hex27NL

Number of elements u1 u2 u3

3 0.606605534 -0.198732899 -3.87449424

5 0.670944949 -0.177990694 -4.21443597

7 0.683678903 -0.175167899 -4.27641520

As in [98], after applying the force, a prescribed rotation of ψ =
π

2
is applied to the

fixed end which rotates the elbow around axis x, as shown in Figure 5.13. However, the

direction of the applied force remains constant during the whole deformation process.

Consequently, in this configuration we expect the deformation to take place only in the

vertical plane, i.e. we expect the absolute value of the vertical displacement u2 to be

exactly equal to L = 10. For this 3D finite element analysis, in order to accomplish the
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Newton-Raphson convergence, the rotation ψ =
π

2
has to be applied in 5 equal increments,

in contrast to only one increment needed in [98] for the geometrically exact 3D beam finite

elements. The results for different mesh densities are presented in Table 5.23.

Table 5.23: Tip displacements u1, u2 and u3 in node N1(−10, 10, 0) after applying the

force F = 5 in one increment and the rotation ψ =
π

2
in five increments (while keeping

the force constant) using Hex27NL

Num elements u1 u2 u3

3 -0.788605849 -10.0000327 6.83459122

5 -0.821452713 -9.99996897 6.31307382

7 -0.818525647 -9.99995938 6.25229118

11 No convergence

From Table 5.23 we can see that the obtained numerical results for u2 with all mesh

densities differ from the expected displacement u2 = −10.0 in the fifth decimal place,

i.e. the error is of order of magnitude of 10−5. In the work of Crisfield and Jelenić [94]

and Jelenić and Crisfield [98] this is taken as an indication of the strain non-invariance

of a formulation and the corresponding interpolated strain measures are referred to as

non-objective. Further discussion is presented in the following section.

Table 5.24: Tip displacements u1, u2 and u3 in node N1(−10, 10, 0) after applying the
force F = 5 in one increment and a rotation ψ = 2π in 20 increments (while keeping the

force constant) using Hex27NL

Num elements u1 u2 u3

3 0.606857046 -0.198121914 -3.87481501

5 No convergence

7 No convergence

An even clearer perception of this anomaly is obtained by first observing the free-end

displacements after applying just the force F = 5, and then rigidly rotating the elbow

for ψ = 2π around the fixed end while keeping the force constant, and then observing

the free-end displacement. We thus expect to obtain the same displacements as obtained

when applying just the force. The problem is solved by first applying the force in one

increment and then by applying the rotation ψ = 2π in 20 increments for three different

meshes and the results are shown in Table 5.24. However, convergence is not accomplished

for the meshes of 5 and 7 elements. For the mesh of 3 elements, comparing the results
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from Tables 5.22 and 5.24 we notice that the obtained displacements differ, i.e. for a mesh

of 3 Hex27NL elements the difference between the obtained dominant displacements u3 is

3.2077·10−4. For the Hex8NL element, the external load is applied via concentrated forces
F
4

in all the four nodes at the free end. Again, the procedure is shown not to be as robust

as in [98], since in our formulation 20 rotation increments are needed in contrast to only 4

needed in [98] in order to assure the Newton-Raphson convergence. The displacements of

the node N2(−10, 10.5, 0.5) at the free end obtained for different mesh densities when just

a force is applied are presented in Table 5.25 while the displacements of this node when

both a force and a rotation of 2π are applied are presented in Table 5.26. We can see that

again we do not obtain the same results (as we should), i.e. the strain non-invariance

anomaly is present. However, by observing the dominant displacement u3 we can see that

by refining the finite-element mesh, the error is reduced, i.e. for a mesh of 3 Hex8NL

elements the difference between the obtained displacements is 1.5366 · 10−3, while for a

mesh of 11 Hex8NL elements 1.9336 · 10−4, i.e. around 10 times smaller. This trend was

also observed in [98]. Also, as in [98] we can see that the error is more severe for the

lower-order element for the same mesh density.

Table 5.25: Tip displacements u1, u2 and u3 in node N2(−10, 10.5, 0.5) after applying
the surface loading p3 = 5 in one increment using Hex8NL

Num elements u1 u2 u3

3 0.0959976851 0.0213167905 -1.99265510

5 0.228107001 -0.0153211998 -2.77538949

7 0.255114516 -0.0407865218 -2.97662570

11 0.301094975 -0.0804784620 -3.32302580

21 0.398404983 -0.112628011 -3.88206822

Table 5.26: Tip displacements u1, u2 and u3 in node N2(−10, 10.5, 0.5) after applying
the surface loading p3 = 5 in one increment and a rotation ψ = 2π in 20 increments

(while keeping the surface load constant) using Hex8NL

Num elements u1 u2 u3

3 0.0962737524 0.0219238490 -1.99419076

5 No convergence

7 0.255134160 -0.0408355629 -2.97683495

11 0.301116332 -0.0804918162 -3.32321916

21 No convergence
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As shown in [98], the strain-invariance anomaly comes to the fore for low-order ele-

ments, coarse meshes and large increments and vanishes with a refinement in any of these.

However, the 3D geometrically nonlinear micropolar formulation presented in this work

is shown not to be as robust as the geometrically exact 3D beam formulation since a sig-

nificantly larger number of increments is needed in order to assure the Newton-Raphson

convergence. Moreover, in order to obtain a converged solution of the problem analysed,

much finer meshes are needed than in the 3D beam formulation. Therefore, the imple-

mentation of a strain-invariant formulation would not be as significantly beneficial in the

presented formulation as it was in [98]. However, in the next section a procedure to over-

come the non-invariance anomaly is outlined, without its finite element implementation.

5.3 Comments on strain invariance in finite-element

implementation of problems with large 3D rota-

tions

In the work of Crisfield and Jelenić [94] it is stated that the objectivity of material

strain measures at a particular configuration is understood as their inherent ability to

remain unaffected by a constant motion of the configuration. Such strain measures are

also referred to as invariant under a superimposed rigid-body motion, i.e. they remain

unchanged when exhibiting a rigid motion. The proof of invariance of the material strain

measures in the geometrically exact three-dimensional beam theory can be found in [94].

In order to prove invariance of the Biot-like strain and curvature tensors, we observe

a configuration defined by its position vector and orientation matrix (x,Q). Next, we

superimpose a rigid motion (xR,QR) consisting of a rigid translation and a rigid rotation

and obtain a new configuration (x,Q) defined as

x = QR (xR + x) , (5.100)

Q = QRQ. (5.101)

The material strain and curvature tensors are invariant if they are equal in both configura-

tions (x,Q) and (x,Q) and independent of the history of deformation [94]. By evaluating

the strain and curvature tensors E = QTF− I and K = −1

2
ε :
(
QTGRADQ

)
at the new

configuration E(x,Q) , K(x,Q) we obtain:

E = QTF− I

= QTQT
RGRADx− I

= QTQT
R (GRADQR (xR + x) + QRGRAD (xR + x))− I. (5.102)
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Since xR and QR are constant and QT
RQR = QRQT

R = I we obtain

E = QTGRADx− I = E. (5.103)

Next, we evaluate the curvature tensor in the new configuration as

K = −1

2
ε :
(
QTGRADQ

)
= −1

2
ε :
(
QTQT

R (GRADQRQ + QRGRADQ)
)

= −1

2
ε :
(
QTGRADQ

)
= K. (5.104)

As in [94], equations (5.103) and (5.104) prove that the material Biot-like strain and

curvature tensors depend only on the current configuration (x,Q), which makes them

independent of the history of deformation. However, as stated in [94], even when the

strain and curvature tensors are invariant, their approximated (interpolated) values do

not necessarily inherit this property.

In our nonlinear finite element implementation, we chose to interpolate the iterative

rotation, i.e. we interpolate the rotations between the last known, but not necessarily

converged configuration and the current configuration. Different other approaches exist

in the literature, such as the interpolation of incremental rotations (the rotations between

the last converged configuration and the current configuration) or interpolation of total

rotations (the rotations between the initial configuration and the current configuration)

[84]. However, regardless of the manner in which rotations are interpolated, all of these

formulations interpolate the rotations between a particular reference configuration and

the current configuration. The rotations interpolated in this way in general include rigid-

body rotations, so that error introduced by the interpolation makes the resulting strains

and curvatures dependent on the rigid-body rotations [94]. In particular, the presently

used interpolation of iterative rotations makes this formulation non-invariant, which is

actually detected in Section 5.2.5.

In order to overcome the non-invariance anomaly, a procedure which eliminates the

rigid-body rotations from the interpolation of the rotational variables is proposed in [94].

For the 3D geometrically exact beam finite elements this was achieved by decomposing

the rotational matrix Q into a reference orientation matrix Qref which is unique for

the whole element and a relative orientation matrix Qrel which represents the actual

orientation with respect to Qref , i.e. Q = QrefQrel. For the reference orientation matrix,

the rotation of one of the beam nodes may be taken, while the relative orientation is

obtained by exponentiation of an interpolated relative rotation with respect to Qref .

Consequently, only local rotations have been interpolated. With this intervention, the
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geometrically exact 3D beam finite-element formulation is shown to be strain-invariant

and path-dependent [98].

The procedure presented in [94] and tested in [98] may be generalised to the present

3D geometrically nonlinear micropolar finite element formulation by using the same ap-

proach. The element orientation matrix may be again decomposed into a reference ori-

entation matrix and a relative orientation matrix. For the hexahedral finite elements

derived, the reference orientation matrix may be taken as the orientation matrix in

one of the chosen nodes (for example Qj, where j represents the number of the node

taken as the reference node) while the relative orientation is obtained by interpolation

as Qrel = exp(
∑nnode

i=1 Ni(ξ, η, ζ)Ψi)
∧

where the local nodal rotation Ψi is calculated from

expΨ̂i = QT
refQi.

However, as already mentioned in the previous section, the presented micropolar for-

mulation requires a large number of increments in order to obtain the Newton-Raphson

convergence and a fine finite-element mesh in order to obtain representative numerical re-

sults and both of these effects reduce the actual amount of non-invariance. Consequently,

the numerical error obtained in the present formulation in this respect can be considered

as negligible.
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Chapter 6

Conclusions and future work

Linear analysis

In linear analysis, new finite elements enhanced with the so-called linked interpolation

in 2D [64] and the incompatible modes in 3D [65] are presented and implemented within

the Finite Element Analysis Program (FEAP) [66]. Some ambiguities in the existing

literature regarding the finite-element method in the linear micropolar continuum theory

are resolved. The conclusions for the linked-interpolation finite elements in 2D and the

incompatible-mode finite elements in 3D are drawn below.

Triangular and quadrilateral linked interpolation finite elements

A new family of membrane finite elements developed using the linked-interpolation

concept for the analysis of the micropolar continuum theory is presented. Triangular and

quadrilateral elements of different order are developed and tested via four numerical ex-

amples and compared to the conventional elements with the Lagrangian interpolation. We

observe the pattern of the element’s behavior and reveal the importance of the enhanced

shape functions in the force-patch-test example. It is concluded that, in order to assure

convergence, the proposed linked-interpolation finite elements should be modified and

here this is performed using Petrov-Galerkin interpolation. Furthermore, it is shown that

all the Lagrange finite elements pass Providas and Kattis’s patch tests [36], while only the

higher-order finite elements with linked interpolation pass their test #3. The character

of this test is sometimes misinterpreted in the literature [40]. In the benchmark problem

regarding the infinite plate with circular hole [13], the newly proposed finite elements cor-

rectly reproduce the amount of stress concentration predicted by the micropolar theory.

However, they do not converge significantly faster their Lagrangian counterparts, which is

explained by the fact that a satisfying result is already obtained with low-order elements.

Consequently, the higher-order polynomial contribution incorporated via the linked inter-

polation in this example does not come to the fore. The last numerical example considers
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a cantilever beam subject to pure bending, for which there exist an analytical solution

(Gauthier and Jahsman’s [1]). It is observed that this problem is sometimes incorrectly

modelled in the literature [39], and a detailed explanation of the necessary approach is

presented in the work and in [64, 65]. It is shown that the first-order quadrilateral element

with linked interpolation converges significantly faster than the conventional Lagrange Q4

element. Interestingly, this improvement is reduced as the ratio between the characteris-

tic length of the micropolar material and a characteristic specimen dimension increases.

The contribution of the linked interpolation in the first-order triangular element remains

present, but is far less significant. Due to the fact that the analytical solution is described

by at most a quadratic polynomial, both conventional and newly presented higher-order

triangular and quadrilateral finite elements reproduce the analytical solution to within

the computer accuracy, as expected.

Hexahedral finite element with incompatible modes

In 3D, the performance of a 1st order hexahedral finite element enhanced with incom-

patible modes is analysed. The element is tested in four numerical examples and compared

to the conventional hexahedral element interpolated using the standard Lagrange interpo-

lation. The motivation for the choice of the numerical examples is found in the available

analytical solutions for various boundary value problems, which are significant for experi-

mental determination of the micropolar material parameters. After assuring convergence

of the finite element against the patch test for constant stresses [65], a cylindrical bend-

ing test [1] is performed, where it is shown that the enhancement due to incompatible

modes is significant. The resulting element is able to correctly reproduce the analytical

solution, while the conventional element gives poor results. Finally, pure torsion tests [1]

on circular cylinders of different geometry are performed and the numerical results are

assessed against those of the experimental analysis on a polymeric foam. It is shown that

the finite element correctly describes the size-effect phenomenon predicted analytically

[1] and observed experimentally [5]. An excellent agreement between theory, experiments

and the numerical analysis is achieved. However, it is observed that the enhancement due

to incompatible modes does not increase the convergence rate present in the conventional

finite element with Lagrange interpolation. It is concluded that the incompatible modes

are not needed for the pure torsion problem (contrary to the pure bending test).

It can be concluded that Hex8IM highly reduces the computational cost in the cylin-

drical bending problem and correctly predicts the size-effect phenomenon in bending and

torsion. Owing to that, the use of the presented element as a part of the numerical

validation of the methodology to determine the micropolar material parameters can be

considered to be highly efficient [65].
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Nonlinear analysis

In the geometrically nonlinear regime, the equilibrium equations of a micropolar con-

tinuum are derived with respect to the material and the spatial frame of reference. The

material Biot-like strain and curvature tensors are derived by following Reissner’s ap-

proach [93]. By introducing the interpolation of the virtual fields in the weak form, the

nonlinear residual equation is obtained. In order to solve this equation, the extensive lin-

earization of the residual force vector is performed, and a base for the Newton-Raphson

solution procedure is set.

Geometrically nonlinear hexahedral finite elements with Lagrange

interpolation

The geometrically nonlinear micropolar hexahedral finite elements interpolated using

Lagrange interpolation of order one and two are derived and implemented within the Fi-

nite Element Analysis Program (FEAP) [66]. In order to test the validity of the derived

formulation, a micropolar analytical nonlinear pure-bending problem has been derived,

which, to the best of our knowledge, represents the only analytical large-deformation mi-

cropolar elasticity solution present in the literature. It is observed that both presented

finite elements converge to the derived analytical solution, with an enhanced performance

of the second-order finite element. The elements are tested on three additional numeri-

cal examples. A T-shaped structure subject to bending and torsion is modelled, which

represents the only pure geometrically nonlinear micropolar numerical example (without

material nonlinearity) we have been able to find in the literature [49]. It is observed that

the derived finite elements are able to model large displacements and large rotations and

the obtained results are in the order of magnitude of those obtained by the beam the-

ory, again with an enhanced performance of the second-order hexahedral finite element.

Next, a genuine three-dimensional problem consisting of a curved cantilever beam with

out-of-plane loading is modelled. Since we have found no micropolar reference solution

in the literature, the problem is modelled by taking very small micropolar parameters.

The obtained results are compared against a reference solution of the classical theory. It

is observed that the results converge towards the reference solution with both h- and p-

refinement. However, due to the presence of the micropolar effects, the structure behaves

slightly stiffer, which is also observed in all the numerical examples previously analysed.

Moreover, a micropolar parameter sensitivity analysis is performed within this example,

where the values of the coupling number and polar ratio have been varied. It is concluded

that neither of the varied parameters affect the results significantly. However, both pa-

rameters influence the robustness of the solution procedure. In addition, by increasing

the number of load increments, the results are shown to be path-dependent. Finally, an
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elbow cantilever subject to point load and prescribed rotation has been analysed. It is

observed that, in addition to path-dependence, the derived finite elements suffer from the

strain non-invariance phenomenon, which is most significantly manifested in low-order

elements, coarse meshes and a small number of increments. However, compared against

the geometrically exact 3D beam formulation, where this anomaly was detected first, the

present formulation needs a significantly larger number of increments in order to assure

convergence of the Newton-Raphson solution procedure. In addition, in order to obtain

sufficiently accurate results, much finer meshes are needed. Consequently, the error due to

the strain non-invariance is not significant. However, a procedure to overcome the strain

non-invariance anomaly is outlined, without its finite-element implementation.

Future work

Further research in the micropolar continuum framework will be performed within the

project Fixed-pole concept in numerical modelling of Cosserats’ continuum (FIMCOS)

financed by the Croatian Science Foundation, where new finite elements for linear and non-

linear static and dynamic analysis in the so-called fixed-pole description will be developed.

In addition, motivated by some observations during this thesis, a set of laboratory tests

will be conducted on a number of specimens in an attempt to identify the micropolar

material parameters of chosen materials.
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Appendix A

Micropolar continuum model –

alternative convention

A.1 Equilibrium of a differential volume dV

Let us analyse the forces acting on the differential volume dV as shown in Figure A.1.

Here, the components of the stress tensor and those of the couple-stress tensor are written

in the alternative form where

t(x, t,n) = n · σ(x, t), (A.1)

m(x, t,n) = n · µ(x, t), (A.2)

which are not in agreement with (2.26) and (2.49), but are very common in the literature,

and for full reference here we derive the equilibrium equations from them.
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(a) Components of the force stress (b) Components of the moment stress

(c) Components of the applied volume load

Figure A.1: Equilibrium of a differential volume.

Summing all the components of the applied load and internal forces along the co-

ordinate axis x1 gives

∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

+ pv1 = 0. (A.3)

Summing all the components of the applied load and internal forces along the co-

ordinate axis x2 gives

∂σ12

∂x1

+
∂σ22

∂x2

+
∂σ32

∂x3

+ pv2 = 0. (A.4)

Summing all the components of the applied load and internal forces along the co-

ordinate axis x3 gives
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∂σ13

∂x1

+
∂σ23

∂x2

+
∂σ33

∂x3

+ pv3 = 0. (A.5)

Written in the matrix form equations (A.3), (A.4) and (A.5) read

〈
∂

∂x1

∂

∂x2

∂

∂x3

〉σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

+
〈
pv1 pv2 pv3

〉
=
〈

0 0 0
〉
, (A.6)

or

∇Tσ + pv
T = 0T. (A.7)

If we now define divergence as

div σ = ∇ · σ, (A.8)

the tensor form of the equations (A.3), (A.4) and (A.5) becomes

div σ + pv = 0. (A.9)

Using summation indices, equations (A.3),(A.4) and (A.5) can also be written as

σji,j + pvi = 0. (A.10)

Summing all the moments around the x1 axis we obtain:

∂µ11

∂x1

+
∂µ21

∂x2

+
∂µ31

∂x3

+ σ23 − σ32 +mv1 = 0. (A.11)

Summing all the moments around the x2 axis we obtain:

∂µ12

∂x1

+
∂µ22

∂x2

+
∂µ32

∂x3

+ σ31 − σ13 +mv2 = 0. (A.12)

Summing all the moments around the x3 axis we obtain:

∂µ13

∂x1

+
∂µ23

∂x2

+
∂µ33

∂x3

+ σ12 − σ21 +mv3 = 0. (A.13)

Written in the matrix form equations (A.11), (A.12) and (A.13) read

〈
∂

∂x1

∂

∂x2

∂

∂x3

〉µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

− 〈σ32 − σ23 −σ31 + σ13 σ21 − σ12

〉
+

+
〈
mv1 mv2 mv3

〉
=
〈

0 0 0
〉
,

(A.14)
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or

∇Tµ− aT + mv
T = 0T. (A.15)

The tensor form of this equation is

div µ− grad x̂ : σ + mv = 0. (A.16)

The proof of this result is given in Appendix B. Using summation indices, equations

(A.11), (A.12) and (A.13) can be written as

µji,j + εijkσjk +mvi = 0. (A.17)

A.2 Equilibrium of a differential surface dS

For the stress-indexing convention introduced in Appendix A.1, we also need to define

the natural boundary conditions. To do this, we need to relate the applied surface loads

ps and ms to the stresses on Sp which resists the action of ps and ms and keep the surface

in equilibrium. To do that, we analyse equilibrium of a differential element under the

differential surface dS with a unit normal n as shown in Figure A.2.

(a) Components of the force stress and the
applied surface load

(b) Components of the moment stress and
applied volume load

Figure A.2: Equilibrium of a differential surface element.

Summing all the forces in the directions x1, x2 and x3 we obtain:

σ11 dS1 + σ21 dS2 + σ31 dS3 = ps1 dS + pv1 dV, (A.18)

σ12 dS1 + σ22 dS2 + σ32 dS3 = ps2 dS + pv2 dV, (A.19)

σ13 dS1 + σ23 dS2 + σ33 dS3 = ps3 dS + pv3 dV. (A.20)
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Taking into account that
dV

dS
is a first-order differential which can be neglected and

dSi = dSni, ni = cos(n, ei), i = 1, 2, 3, (A.21)

where n is the unit normal to the surface element dS, equations (A.18) may be written

in the matrix form to obtain the following:

〈
n1 n2 n3

〉σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =
〈
ps1 ps2 ps3

〉
, (A.22)

i.e.

nTσ = ps
T. (A.23)

The previous equation can be written in a tensor form as follows:

n · σ = ps, (A.24)

and in the component form as follows:

σjinj = psi, i, j = 1, 2, 3. (A.25)

Summing all the moments around x1, x2 and x3 and after neglecting the contribution

of the stress forces and volume loads which represent differentials of a higher order we

obtain the following:

µ11dS1 + µ21dS2 + µ31dS3 = ms1dS, (A.26)

µ12dS1 + µ22dS2 + µ32dS3 = ms2dS, (A.27)

µ13dS1 + µ23dS2 + µ33dS3 = ms3dS, (A.28)

(A.29)

or in the matrix form:

〈
n1 n2 n3

〉µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 =
〈
ms1 ms2 ms3

〉
, (A.30)

i.e.

nTµ = ms
T. (A.31)

The tensor form of this equation is
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n · µ = ms, (A.32)

while its component form is

µjinj = msi, i, j = 1, 2, 3. (A.33)
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Appendix B

Tensor form of the vector a

In order to write the tensor form of equation (2.67) we need to express vector a

from equation (2.66) using tensorial operations. This has been performed in Section 2.2.1

(equations (2.68)-(2.74)), but here we illustrate these results using a matrix representation

of tensors.

The following identity holds for every vector v ∈ R

x× v = x̂ · v, where x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (B.1)

Since x̂ is a tensor of order 2, its gradient is a tensor of order 3, i.e. we may represent it

in a matrix form as

grad x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

⊗


∂

∂x1
∂

∂x2
∂

∂x3


=



0 0 0

0 0 −1

0 1 0


 0 0 1

0 0 0

−1 0 0


0 −1 0

1 0 0

0 0 0





, (B.2)

where the sub-matrices in the right-hand side should be understood as ”pages” of the

third-order tensor grad x̂.
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From here, then,

grad x̂ : σ =



0 0 0

0 0 −1

0 1 0


 0 0 1

0 0 0

−1 0 0


0 −1 0

1 0 0

0 0 0





:

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


σ32 − σ23

−σ31 + σ13

σ21 − σ12

 , (B.3)

i.e.

a = grad(x̂) : σ. (B.4)
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Appendix C

Input file to generate the finite

element mesh for the plate with hole

problem for GMSH software package
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PWH_INPUT FILE_TRIANGULAR.txt
// Gmsh project created on Wed Sep 27 21:48:45 2017
// Sara Grbcic, sara.grbcic@uniri.hr

L=16.2; //domain length and height
r=0.216; //hole radius
a = 1.2; // ratio between the radial increments
n=22; // number of divisions
p=(a-1)/(a^(n)-1)*(L-r);
alpha=90/8*Pi/180; // angle in radians to obtain boundary nodes

Point(1) = {0, 0, 0, 0};
Point(2) = {r, 0, 0, 0};
Point(3) = {0, r, 0, 0};

j=4;
k=1;

For i In {0:n-1}

Point(j) = {r+p*(1-a^i)/(1-a), 0, 0, 0};
Point(j+1) = {0, r+p*(1-a^i)/(1-a), 0, 0};

Circle(k) = {j-1, 1, j-2};
Transfinite Line {k} = 9; 

Line (k+1) ={j-2,j};
Transfinite Line {k+1} = 2; 

Circle(k+2) = {j, 1, j+1};
Transfinite Line {k+2} = 9;

Line (k+3) ={j+1,j-1};
Transfinite Line {k+3} = 2;

Line Loop (k+4)={k,k+1,k+2,k+3};

Plane Surface (k+5) = {(k+4)};

Transfinite Surface {k+5} = {j-2,j,j+1,j-1} Right;

p1=k;
p2=j;
j=j+2;
k=k+5;

EndFor

// THE OTHER STRUCTURED PART
// SURFACE 1
Point(2*n+4) = {L, 0, 0, 0};

Page 1

C.1 Input file for triangular finite elements
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PWH_INPUT FILE_TRIANGULAR.txt
Line (5*n+2) = {p2,2*n+4};
Transfinite Line {5*n+2} = 2;

Point(2*n+5) = {L, L*Tan(alpha), 0, 0};
Point(2*n+6) = {L, L*Tan(2*alpha), 0, 0};
Line (5*n+3) = {2*n+4,2*n+5,2*n+6};
Transfinite Line {5*n+3} = 3;

Point(2*n+7) = {(r+p*(1-a^(n-1))/(1-a))*Cos(2*alpha), 
(r+p*(1-a^(n-1))/(1-a))*Sin(2*alpha), 0, 0};
Line (5*n+4) = {2*n+6,2*n+7};
Transfinite Line {5*n+4} = 2;

Circle (5*n+5) = {2*n+7,1,p2};
Transfinite Line {5*n+5} = 3;

Line Loop(5*n+6)={5*n+2,5*n+3,5*n+4,5*n+5}; //Line 
Loop(5*n+6)={5*n+2,5*n+3,5*n+4,5*n+5};

Plane Surface (5*n+7) = {5*n+6}; 
Transfinite Surface {5*n+7} = {p2,2*n+4,2*n+6,2*n+7} Right;

// SURFACE 2
Point(2*n+9) = {L*Tan(2*alpha),L, 0, 0};
Line (5*n+8) = {2*n+6,2*n+9};
Transfinite Line {5*n+8} = 5;

Point(2*n+10) = {(r+p*(1-a^(n-1))/(1-a))*Sin(2*alpha), 
(r+p*(1-a^(n-1))/(1-a))*Cos(2*alpha), 0, 0};
Line (5*n+9) = {2*n+9,2*n+10};
Transfinite Line {5*n+9} = 2;

Circle (5*n+10) = {2*n+10,1,2*n+7};
Transfinite Line {5*n+10} = 5;

Line Loop(5*n+11)={-(5*n+4),5*n+8,5*n+9,5*n+10};

Plane Surface (5*n+12) = {5*n+11}; 
Transfinite Surface {5*n+12};

// SURFACE 3
Point(2*n+11) = {0, L, 0, 0};
Line (5*n+13) = {2*n+9,2*n+11};
Transfinite Line {5*n+13} = 3;

Line (5*n+14) = {2*n+11,p2+1};
Transfinite Line {5*n+14} = 2;

Circle (5*n+15) = {p2+1,1,2*n+10};
Transfinite Line {5*n+15} = 3;

Line Loop(5*n+16)={-(5*n+9),5*n+13,5*n+14,5*n+15};
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Plane Surface (5*n+17) = {5*n+16}; 
Transfinite Surface {5*n+17};

// SURFACE 4
Point(2*n+12) = {L,0.5*(L-L*Tan(2*alpha))+L*Tan(2*alpha),0, 0};
Line (5*n+18) = {2*n+6,2*n+12};
Transfinite Line {5*n+18} = 2;

y_108 = 0.5*(L-L*Tan(2*alpha))+L*Tan(2*alpha);
y_102 = L*Tan(2*alpha); 

Point(2*n+13) = {0.5*(L+y_108),0.5*(y_108-y_102)+y_102,0, 0};
x_109 = 0.5*(L+y_108);
y_109 = 0.5*(y_108-y_102)+y_102;
Line (5*n+19) = {2*n+12,2*n+13};
Transfinite Line {5*n+19} = 2;

Line (5*n+20) = {2*n+13,2*n+6};
Transfinite Line {5*n+20} = 2;

Line Loop(5*n+21)={5*n+18,5*n+19,5*n+20};

Plane Surface (5*n+22) = {5*n+21}; 
Transfinite Surface {5*n+22};

// SURFACE 5
Point(2*n+16) = {y_108, L, 0, 0};
Line (5*n+23) = {2*n+12,2*n+16};
Transfinite Line {5*n+23} = 3;

Point(2*n+17) = {y_109, x_109, 0, 0};

Line (5*n+24) = {2*n+16,2*n+17};
Transfinite Line {5*n+24} = 2;

Line (5*n+25) = {2*n+17,2*n+13};
Transfinite Line {5*n+25} = 3;

Line Loop(5*n+26)={-(5*n+19),5*n+23,5*n+24,5*n+25};

Plane Surface (5*n+27) = {5*n+26}; 
Transfinite Surface {5*n+27};

// SURFACE 6

Line (5*n+28) = {2*n+16,2*n+9};
Transfinite Line {5*n+28} = 2;

Line (5*n+29) = {2*n+9,2*n+17};
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Transfinite Line {5*n+29} = 2;

Line Loop (5*n+30)={-(5*n+24),5*n+28,5*n+29};
Plane Surface (5*n+31) = {5*n+30}; 
Transfinite Surface {5*n+31} Right;

// SURFACE 7

Point(2*n+15) = {L, L, 0, 0};

Line (5*n+32) = {2*n+12,2*n+15};
Transfinite Line {5*n+32} = 2;

Line (5*n+33) = {2*n+15,2*n+16};
Transfinite Line {5*n+33} = 2;

Line Loop (5*n+34)={-(5*n+23),5*n+32,5*n+33};
Plane Surface (5*n+35) = {5*n+34}; 
//Transfinite Surface {5*n+35};

//this needs to be done manually, use CTRL+MOUSE to select all
Physical Surface("triangles") = {26, 21, 16, 11, 6, 31, 91, 145, 141, 137, 132, 
127, 122, 117, 111, 106, 101, 96, 86, 81, 76, 71, 66, 61, 56, 51, 46, 41, 36};

Mesh.Algorithm = 1;

Mesh.ElementOrder = 1; //Set element order

Mesh 2;  // Generate 2D mesh
Coherence Mesh;  // Remove duplicate entities
//Save "plate-with-hole-T3-a=1.2.msh";  // Save mesh in MSH format
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// Gmsh project created on Wed Sep 27 21:48:45 2017
// Sara Grbcic, sara.grbcic@uniri.hr

L=16.2; //domain length and height
r=0.216; //hole radius
a = 1.2; // ratio between the radial increments
n=22; // number of divisions
p=(a-1)/(a^(n)-1)*(L-r);
alpha=90/8*Pi/180; // angle in radians to obtain boundary nodes

Point(1) = {0, 0, 0, 0};
Point(2) = {r, 0, 0, 0};
Point(3) = {0, r, 0, 0};

j=4;
k=1;

For i In {0:n-1}

Point(j) = {r+p*(1-a^i)/(1-a), 0, 0, 0};
Point(j+1) = {0, r+p*(1-a^i)/(1-a), 0, 0};

Circle(k) = {j-1, 1, j-2};
Transfinite Line {k} = 9; // 9 = number of nodes per line

Line (k+1) ={j-2,j};
Transfinite Line {k+1} = 2;  // 2 = number of nodes per line

Circle(k+2) = {j, 1, j+1};
Transfinite Line {k+2} = 9;  // 9 = number of nodes per line

Line (k+3) ={j+1,j-1};
Transfinite Line {k+3} = 2;

Line Loop (k+4)={k,k+1,k+2,k+3};

Plane Surface (k+5) = {(k+4)};

Transfinite Surface {k+5} = {j-2,j,j+1,j-1} Right;
Recombine Surface {k+5};

p1=k;
p2=j;
j=j+2;
k=k+5;

EndFor

// THE OTHER STRUCTURED PART
// SURFACE 1
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Point(2*n+4) = {L, 0, 0, 0}; 
Line (5*n+2) = {p2,2*n+4}; 
Transfinite Line {5*n+2} = 2;

Point(2*n+5) = {L, L, 0, 0}; //101
Point(2*n+6) = {L, (r+p*(1-a^(n-1))/(1-a))*Sin(alpha), 0, 0}; 
Point(2*n+7) = {L, (r+p*(1-a^(n-1))/(1-a))*Sin(2*alpha), 0, 0}; 
Point(2*n+8) = {L, (r+p*(1-a^(n-1))/(1-a))*Sin(3*alpha), 0, 0};
Line (5*n+3) = {2*n+4,2*n+6,2*n+7,2*n+8,2*n+5};
Transfinite Line {5*n+3} = 5;

Point(2*n+9) = {(r+p*(1-a^(n-1))/(1-a))*Cos(4*alpha), 
(r+p*(1-a^(n-1))/(1-a))*Sin(4*alpha), 0, 0};
Line (5*n+4) = {2*n+5,2*n+9};
Transfinite Line {5*n+4} = 2;

Circle (5*n+5) = {2*n+9,1,p2};
Transfinite Line {5*n+5} = 5;

Line Loop(5*n+6)={5*n+2,5*n+3,5*n+4,5*n+5};

Plane Surface (5*n+7) = {5*n+6}; 
Transfinite Surface {5*n+7};
Recombine Surface {5*n+7};

// SURFACE 2
Point(2*n+10) = {0, L, 0, 0};
Line (5*n+8) = {2*n+5,2*n+10};
Transfinite Line {5*n+8} = 5;

Line (5*n+9) = {2*n+10,p2+1};
Transfinite Line {5*n+9} = 2;

Circle (5*n+10) = {p2+1,1,2*n+9};
Transfinite Line {5*n+10} = 5;

Line Loop(5*n+11)={5*n+8,5*n+9,5*n+10,-(5*n+4)};

Plane Surface (5*n+12) = {5*n+11}; 
Transfinite Surface {5*n+12};
Recombine Surface {5*n+12};

Mesh.Algorithm = 1;

Mesh.ElementOrder = 1; //Set element order

//Physical Surface("quads") = {66, 210, 205, 111, 106, 101, 96, 91, 86, 81, 76, 
71, 11, 61, 56, 51, 46, 41, 36, 31, 26, 21, 16}; //This needs to be done 
manually

Mesh 2;  // Generate 2D mesh
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Coherence Mesh;  // Remove duplicate entities

//Save "plate-with-hole-Q4-a=1.2.msh";  // Save mesh in MSH format
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Appendix D

Geometric derivation of the

exponential map as given by Argyris

[2]

Any three-dimensional rotation can be interpreted as a 2D rotation (defined by the

angle of rotation ϑ) that takes place in a plane orthogonal to the axis of rotation, which

can be identified by a unit rotation vector e. The two quantities (e, ϑ) are referred tu as

the principal axis of rotation and the principal angle of rotation, which completely define

the rotation represented by the rotation tensor Λ. In order to express the rotation tensor

in terms of the rotation vector we choose the geometric approach presented by Argyris

[2]. We introduce a rotational pseudovector ϑ = ϑ e along the axis of rotation as shown

in figure, where ϑ is the vector norm, and e is the unit vector. Written in the Cartesian

coordinate system, the vector is described as ϑ = {ϕ χ ψ}, where the vector norm is

defined as ϑ =
√
ϕ2 + χ2 + ψ2. We want to rotate a vector p by applying a rotation

expressed as ϑ (defining the axis of rotation- direction of the vector and angle of rotation

defined by the vector norm) from its initial position to a new position referred to as p̂, as

shown in Figure D.1.
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Figure D.1: Construction of a transformation matrix T(ϑ) = Λ for an arbitrary
rotational pseudovector ϑ [2]

In other words, the aim is to establish the following transformation:

p̂ = T(ϑ) p. (D.1)

We refer to T(ϑ) as the transformation rotation matrix, which is a nonlinear function

of ϑ. The rotation matrix is orthogonal, i.e. TT = T−1, T ∈ SO(3). By analysing the

geometry of the rotation process we define the following:

p̂ = p + ∆p. (D.2)

We seek to express the right hand side of equation (D.2) as in equation (D.1). From

Figure D.1, we obtain ∆p =
#    »

PD +
#    »

DP̂ . First we proceed to the definition of the vector
#    »

DP̂ , pointing in the direction of e× p. The norm of vector |
#    »

DP̂ | is equal to

|
#    »

DP̂ | = a sinϑ. (D.3)

Since we know the direction, we have to calculate the norm of e× p, as follows:

|e× p| = |e| |p| sin^(e,p) (D.4)

= 1 p sinα (D.5)

= a. (D.6)
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By further introducing ϑ = ϑe, the vector
#    »

DP̂ is defined as

#    »

DP̂ = a sinϑ
1

a
(e× p) (D.7)

= (e× p) sinϑ (D.8)

=
sinϑ

ϑ
(ϑ× p). (D.9)

Now we have to define the vector
#    »

PD. We know that it is orthogonal to the plane in

which lies the vector
#    »

DP̂ . Furthermore, we know that it is also orthogonal to the unit

vector e. Due to that, we assign the direction e× (e×p). First we calculate the norm of

the assigned direction as

|e× (e× p)| = |e| |(e× p)| sin 90◦

= 1 a 1

= a. (D.10)

Furthermore, from Figure D.1, we obtain

| #    »

PD| = | #    »

PC|+ | #    »

CD|

= a+ (− cosϑ a)

= a(1− cosϑ)

= a(sin2 ϑ

2
+ cos2 ϑ

2
− cos2 ϑ

2
+ sin2 ϑ

2
)

= 2a sin2 ϑ

2
. (D.11)

Finally, by introducing (D.10) and (D.11) into the definition of
#    »

PD we obtain

#    »

PD = 2a sin2 ϑ

2

1

a
(e× (e× p))

=
1

ϑ

1

ϑ
2 sin2 ϑ

2
(ϑ× (ϑ× p))

=
1

2

sin2 ϑ

2

(
ϑ

2
)2

(ϑ× (ϑ× p)) (D.12)

Now we go back to equation (D.2) and define:

p̂ = p +
sinϑ

ϑ
(ϑ× p) +

1

2

sin2 ϑ

2

(
ϑ

2
)2

(ϑ× (ϑ× p))
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= p +
sinϑ

ϑ
(ϑ× p) +

1− cosϑ

ϑ2
(ϑ× (ϑ× p)).

We convert the cross product to a matrix multiplication by presenting a skew-symmetric

matrix obtained from a vector, as follows:

ϑ̂ = S =

 0 −ψ χ

ψ 0 −ϕ
−χ ϕ 0

 , (D.13)

i.e.

ϑ× p = ϑ̂p = Sp, (D.14)

ϑ× (ϑ× p) = ϑ̂2p = S2p. (D.15)

Finally, we obtain

p̂ =

(
I +

sinϑ

ϑ
S +

1

2

sin2 ϑ

2

(
ϑ

2
)2

S2

)
p

=

(
I +

sinϑ

ϑ
S +

1− cosϑ

ϑ2
S2

)
p

= T(ϑ) p,

where T(ϑ) represents the rotation matrix. By expanding the trigonometric functions in

terms multiplying S in the above equation into Taylor series as

sinϑ = ϑ− ϑ3

3!
+
ϑ5

5!
− ..., cosϑ = 1− ϑ2

2!
+
ϑ4

4!
− ..., (D.16)

we obtain the following

T(ϑ) = I +

(
1− 1

3!
ϑ2 +

1

5!
ϑ4 + ...

)
S +

(
1

2!
− 1

4!
ϑ2 +

1

6!
ϑ4 + ...

)
S2. (D.17)

By recognizing the recursive properties of the skew-symmetric matrix S as

S2n−1 = (−1)n−1ϑ2(n−1)S (D.18)

S2n = (−1)n−1ϑ2(n−1)S2 (D.19)

we prove the so-called exponential map, as

T(ϑ) = I + S +
1

2!
S2 +

1

3!
S3 + ... +

1

n!
Sn = eS = exp S = exp ϑ̂, (D.20)

which represents a specific operation between a Lie group and a related Lie algebra (for
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example so(n)⇔ SO(n)). In conclusion, the following equation

T(ϑ) = I +
sinϑ

ϑ
ϑ̂+

1− cosϑ

ϑ2
ϑ̂2 (D.21)

defines the relation between the total rotation vector ϑ and the rotation tensor T. Fur-

thermore, it represents the so-called Euler rotation vector parametrization of the rotation

tensor, also known as the Euler-Rodrigues formula.
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Appendix E

Tensor identities

In the present Appendix some of the identities used in this thesis are outlined. The

proof for the commonly used ones can be found in [53], while for identities derived in this

work the proof is also given.

Vectors:

The following identities hold for any vectors a, b, c:

a · b = b · a = aTb = bTa, (E.1)

abT = a⊗ b, (E.2)

tr(a⊗ b) = a · b = aTb, (E.3)

v = −1

2
ε : v̂ = ax(v̂), (E.4)

â b = −b̂ a, (E.5)

tr(âb̂) = −2a · b = −2aTb, (E.6)

v̂ ×w = w ⊗ v − v ⊗w. (E.7)
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Tensors of order 2:

The following identities hold for any 2nd order tensors A, B, C:

A : BT = AT : B, (E.8)

A : B = B : A, (E.9)

A : B = tr(ABT), (E.10)

tr(ABC) = (AB) : CT = (BC) : AT = (CA) : BT, (E.11)

(ABC) : DT = (BCD) : AT = (CDA) : BT, (E.12)

ax(A−AT) = −ε : A (E.13)

PROOF of (E.13)

ax(A−AT)

= ax


A11 A12 A13

A21 A22 A23

A31 A32 A33

−
A11 A21 A31

A12 A22 A32

A13 A23 A33




= ax


 0 A12 − A21 A13 − A31

A21 − A12 0 A23 − A32

A31 − A13 A32 − A23 0




=


A32 − A23

A13 − A31

A21 − A12

 (E.14)
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− ε : A

= −



0 0 0

0 0 1

0 −1 0


0 0 −1

0 0 0

1 0 0


 0 1 0

−1 0 0

0 0 0




:

A11 A12 A13

A21 A22 A23

A31 A32 A33



=


A32 − A23

A13 − A31

A21 − A12

 , (E.15)

i.e.

ax(A−AT) = −ε : A. (E.16)
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Appendix F

Derivation of terms needed in the

finite element formulation of the

residual vector

F.1 Introduction of the interpolation of virtual dis-

placements into
(
QTGRADuh

)
: B

(
QTGRADuh

)
: B =

(
QT(uh ⊗∇X)

)
: B

=
(
QT(Nud

e ⊗∇X)
)

: B

=

(
QT

nnode∑
i=1

[Ni 0]d
e

i

〈
∂

∂X1

∂

∂X2

∂

∂X3

〉)
: B

=

QT

nnode∑
i=1

Ni


u1i

u2i

u3i


〈

∂

∂X1

∂

∂X2

∂

∂X3

〉 : B

=

(
QT

nnode∑
i=1

Ni I d
e

ui

〈
∂

∂X1

∂

∂X2

∂

∂X3

〉)
: B

=

(
QT

nnode∑
i=1

d
e

ui
Ni∇T

X

)
: B

=

(
QT

nnode∑
i=1

d
e

ui
⊗ (Ni∇X)

)
: B

=

nnode∑
i=1

((
QT d

e

ui
⊗ (Ni∇X)

)
: B
)
, and by using (E.10),
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=

nnode∑
i=1

tr
((

QT d
e

ui
⊗ (Ni∇X)

)
BT
)

=

nnode∑
i=1

tr
(
QT d

e

ui

(
Ni∇T

X

)
BT
)
, and by using (E.2),

=

nnode∑
i=1

tr
(
QT d

e

ui
⊗ (B(Ni∇X))

)
, and by using (E.3),

=

nnode∑
i=1

((
d
eT

ui
Q
)

(B(Ni∇X))
)

= d
eT

u1
QB(N1∇X) + d

eT

u2
QB(N2∇X) + . . . + d

eT

unnode
QB(Nnnode∇X)

=
〈
d
eT

u1
d
eT

u2
. . . d

eT

unnode

〉


QB(N1∇X)

QB(N2∇X)
...

QB(Nnnode∇X)



=
〈〈

d
eT

u1
d
eT

ϕ1

〉 〈
d
eT

u2
d
eT

ϕ2

〉
. . .

〈
d
eT

unnode
d
eT

ϕnnode

〉 〉



{
QB(N1∇X)

0

}
{

QB(N2∇X)

0

}
...{

QB(Nnnode∇X)

0

}



=
〈
d
eT

1 d
eT

2 . . . d
eT

nnode

〉


QB 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 QB 0 · · · 0 0

0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · QB 0

0 0 0 0 · · · 0 0


︸ ︷︷ ︸

A



N1∇X

0

N2∇X

0
...

Nnnode∇X

0



= d
eT

A



[
N1

0

]
∇X[

N2

0

]
∇X

.

.[
Nnnode

0

]
∇X


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= d
eT

A





N1

0

N2

0
...

Nnnode

0


∇X


= d

eT

A
(
Nu

T∇X

)
. (F.1)

F.2 Introduction of the interpolation of virtual rota-

tions into

(
QTϕ̂h

T

F

)
: B

By using (E.12), (E.10), (E.9) and by noticing that a double-contraction product

(scalar product) between a skew-symmetric and a symmetric 2nd order tenor is zero, the

term

(
QTϕ̂h

T

F

)
: B can be written as

(
QTϕ̂h

T

F

)
: B =

(
ϕ̂h

T

FBT

)
: Q =

(
FBTQT

)
: ϕ̂h = ϕ̂h :

(
FBTQT

)
=

= ϕ̂h : skew
(
FBTQT

)
= tr

(
ϕ̂h skew

(
FBTQT

)T
)

=

= −tr

(
ϕ̂h skew

(
FBTQT

))
, (F.2)

where skew
(
FBTQT

)
=

1

2

(
FBTQT −QBFT

)
. The trace of a dot product of two skew-

symmetric matrices â and b̂ is equal to

tr
(
â b̂
)

= tr


 0 −a3 a2

a3 0 −a1

−a2 a1 0


 0 −b3 b2

b3 0 −b1

−b2 b1 0




= tr

−a3b3 − a2b2 a2b1 a3b1

a1b2 −a3b3 − a1b1 a3b2

a1b3 a2b3 −a2b2 − a1b1


= −2(a1b1 + a2b2 + a3b3)

= −2a · b

= −2aTb. (F.3)
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By introducing (F.3) into (F.2) we obtain

−tr

(
ϕ̂h skew

(
FBTQT

))
= 2ϕh · ax

(
skew

(
FBTQT

))
= 2ϕh

T
ax
(
skew

(
FBTQT

))
.

(F.4)

Finally, (
QTϕ̂

T
F
)

: B = 2d
eT

Nϕ
Tax

(
skew

(
FBTQT

))
= d

eT

Nϕ
Tax

(
FBTQT −QBFT

)
. (F.5)

212



Appendix G

Linearization

G.1 Directional derivative of Q in the direction of ϕ̂

We consider the orientation (or rotation) tensor Q ∈ SO(3) and denote its kinemat-

ically admissible perturbation by ϕ̂ ∈ so(3) as
d

dε

∣∣∣∣
ε=0

Qε = Q. The variation of the

orientation matrix is thus defined as its directional derivative in the direction of a super-

imposed infinitesimally small perturbation ϕ, i.e.

Q =
d

dε

∣∣∣∣
ε=0

exp (εϕ̂)Q

=
d

dε

∣∣∣∣
ε=0

(
I +

sin εϕ

εϕ
εϕ̂+

1− cos εϕ

(εϕ)2
ε2ϕ̂

2
)

Q

=

(
cos(εϕ)ϕ̂+

sin(εϕ)

ϕ
ϕ̂

2
)

Q

∣∣∣∣
ε=0

= ϕ̂Q (G.1)

G.2 Directional derivative of Q in the direction of

∆̂ϕ

∆Q =
d

dε

∣∣∣∣
ε=0

exp (ε∆̂ϕ)Q

=
d

dε

∣∣∣∣
ε=0

(
I +

sin(ε∆ϕ)

ε∆ϕ
ε∆̂ϕ+

1− cos(ε∆ϕ)

(ε∆ϕ)2
ε2∆̂ϕ

2
)

Q

=

(
cos(ε∆ϕ)∆̂ϕ+

sin((ε∆ϕ))

∆ϕ
∆̂ϕ

2
)

Q

∣∣∣∣
ε=0

= ∆̂ϕQ. (G.2)
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G.3 Directional derivative of F in the direction of ∆u

∆F =
d

dε

∣∣∣∣
ε=0

F (u + ε∆u)

=
d

dε

∣∣∣∣
ε=0

(GRAD (ε∆u) + I)

=
d

dε

∣∣∣∣
ε=0

((ε∆u)⊗∇X + I)

= GRAD∆u (G.3)

G.4 Directional derivative of E in the direction of ∆u

and ∆̂ϕ

∆E =
d

dε

∣∣∣∣
ε=0

Eε

=
d

dε

∣∣∣∣
ε=0

E
(
u + ε∆u, exp(ε∆̂ϕ)Q

)
=

d

dε

∣∣∣∣
ε=0

(
QTF− I

)
ε

=
d

dε

∣∣∣∣
ε=0

QT
ε F + QT d

dε

∣∣∣∣
ε=0

Fε

= QT
(

∆̂ϕ
T
F + GRAD∆u

)
(G.4)

G.5 Directional derivative of K in the direction of

∆̂ϕ

The curvature matrix has been derived in (4.103) as:

K = −1

2
ε :
(
QTGRADQ

)
, (G.5)

where each column represents a curvature vector Ki such that Ki = KEi = ax

(
QT ∂Q

∂Xi

)
.

The directional derivative of Ki is equal to

d

dε

∣∣∣∣
ε=0

Ki

(
exp(ε∆̂ϕ)Q

)
=

d

dε

∣∣∣∣
ε=0

(Ki)ε
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=
d

dε

∣∣∣∣
ε=0

ax

(
QT ∂Q

∂Xi

)
ε

= ax

(
d

dε

∣∣∣∣
ε=0

QT
ε

∂Q

∂Xi

+ QT d

dε

∣∣∣∣
ε=0

∂Qε

∂Xi

)
= ax

(
QT∆̂ϕ

T ∂Q

∂Xi

+ QT ∂

∂Xi

(∆̂ϕQ)

)
= ax

(
QT

(
∆̂ϕ

T ∂Q

∂Xi

+
∂

∂Xi

(∆̂ϕQ)

))
. (G.6)

Since
∂

∂Xi

(∆̂ϕQ) =
∂∆̂ϕ

∂Xi

Q + ∆̂ϕ
∂Q

∂Xi

⇒ −∆̂ϕ
∂Q

∂Xi

=
∂∆̂ϕ

∂Xi

Q − ∂

∂Xi

(∆̂ϕQ) and

∆̂ϕ
T

= −∆̂ϕ (G.6) can be written as

d

dε

∣∣∣∣
ε=0

(Ki)ε = ax

(
QT

(
−∆̂ϕ

∂Q

∂Xi

+
∂

∂Xi

(∆̂ϕQ)

))
= ax

(
QT

(
∂∆̂ϕ

∂Xi

Q− ∂

∂Xi

(∆̂ϕQ) +
∂

∂Xi

(∆̂ϕQ)

))

= ax

(
QT∂∆̂ϕ

∂Xi

Q

)
. (G.7)

By recognizing that Q̂v = Qv̂QT ∀ v ∈ R3, i.e. QT∂∆ϕ

∂Xi

∧

= QT∂∆̂ϕ

∂Xi

Q and introducing

it into (G.7) we obtain

d

dε

∣∣∣∣
ε=0

(Ki)ε = ax

(
QT∂∆̂ϕ

∂Xi

Q

)

= ax

(
QT∂∆ϕ

∂Xi

)∧
= QT∂∆ϕ

∂Xi

(G.8)

In order to obtain the directional derivative of the whole curvature matrix, we recognise

that K = Ki ⊗ Ei from where it follows

∆K =
d

dε

∣∣∣∣
ε=0

Kε

=
d

dε

∣∣∣∣
ε=0

(Ki)ε ⊗ Ei

= QT∂∆ϕ

∂Xi

⊗ Ei

= QTGRAD ∆ϕ (G.9)
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G.6 Directional derivative of B in the direction of ∆u

and ∆̂ϕ

∆B =
d

dε

∣∣∣∣
ε=0

Bε

=
d

dε

∣∣∣∣
ε=0

B
(
u + ε∆u, exp(ε∆̂ϕ)Q

)
=

d

dε

∣∣∣∣
ε=0

(T : E)ε

= T :
d

dε

∣∣∣∣
ε=0

Eε

= T : QT
(

∆̂ϕ
T
F + GRAD∆u

)
(G.10)

G.7 Directional derivative of G in the direction of

∆̂ϕ

∆G =
d

dε

∣∣∣∣
ε=0

Gε

=
d

dε

∣∣∣∣
ε=0

(D : K)ε

= D : QTGRAD∆ϕ (G.11)

G.8 Directional derivative of A in the direction of ∆u

and ∆̂ϕ

The directional derivative of the block matrix A derived in (5.6) is equal to

∆A =
d

dε

∣∣∣∣
ε=0

Aε

=
d

dε

∣∣∣∣
ε=0

A
(
u + ε∆u, exp(ε∆̂ϕ)Q

)
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=



d

dε

∣∣∣∣
ε=0

(QB)ε 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0
d

dε

∣∣∣∣
ε=0

(QB)ε 0 · · · 0 0

0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · d

dε

∣∣∣∣
ε=0

(QB)ε 0

0 0 0 0 · · · 0 0


(G.12)

where the directional derivative of the product QB is equal to

d

dε

∣∣∣∣
ε=0

(QB)ε =
d

dε

∣∣∣∣
ε=0

QεB + Q
d

dε

∣∣∣∣
ε=0

Bε

= ∆̂ϕQB + Q (T : ∆E)

= ∆̂ϕQ
(
T :

(
QTF− I

))
+ Q

(
T :

(
QT
(

∆̂ϕ
T
F + GRAD∆u

)))
.

(G.13)

G.9 Directional derivative of L in the direction of ∆̂ϕ

The directional derivative of the block matrix L derived in (5.8) is equal to

∆L =
d

dε

∣∣∣∣
ε=0

Lε

=
d

dε

∣∣∣∣
ε=0

L
(

exp(ε∆̂ϕ)Q
)

=



0 0 0 0 · · · 0 0

0
d

dε

∣∣∣∣
ε=0

(QG)ε 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 0
d

dε

∣∣∣∣
ε=0

(QG)ε · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0
d

dε

∣∣∣∣
ε=0

(QG)ε


(G.14)

where the directional derivative of the product QG is equal to

d

dε

∣∣∣∣
ε=0

(QG)ε =
d

dε

∣∣∣∣
ε=0

QεG + Q
d

dε

∣∣∣∣
ε=0

Gε
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= ∆̂ϕQG + Q (D : ∆K)

= ∆̂ϕQ

(
D :

(
−1

2
ε :
(
QTGRADQ

)))
+ Q

(
D :

(
QTGRAD∆ϕ

))
.

(G.15)

G.10 Linearized residual ∆g

In order to derive the linearized residual, the directional derivatives derived in (G.1)-

(G.9) are used.

G.10.1 Term
d

dε

∣∣∣∣
ε=0

(A
(
Nu

T∇X)
)
ε

A
(
Nu

T∇X

)
=



QB(N1∇X)

0

QB(N2∇X)

0
...

QB(Nnnode∇X)

0


, (G.16)

Since from (G.13)
d

dε

∣∣∣∣
ε=0

(QB)ε = ∆̂ϕQB + Q (T : ∆E) we obtain

d

dε

∣∣∣∣
ε=0

(
A
(
Nu

T∇X

))
ε

=



(
∆̂ϕQB + Q (T : ∆E)

)
(N1∇X)

0(
∆̂ϕQB + Q (T : ∆E)

)
(N2∇X)

0
...(

∆̂ϕQB + Q (T : ∆E)
)

(Nnnode∇X)

0


(G.17)
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=



∆̂ϕQB(N1∇X)

0

∆̂ϕQB(N2∇X)

0
...

∆̂ϕQB(Nnnode∇X)

0


+



Q (T : ∆E) (N1∇X)

0

Q (T : ∆E) (N2∇X)

0
...

Q (T : ∆E) (Nnnode∇X)

0


.

(G.18)

By using â b = −b̂ a, the term ∆̂ϕQB(Ni∇X) can be written as −QB(Ni∇X)
∧

∆ϕ. In

order to manipulate the term Q (T : ∆E) (Ni∇X), we substitute

T = λ I⊗ I + (µ+ ν)I + (µ− ν)IT and obtain:

Q (T : ∆E) (Ni∇X) = Q
((
λ I⊗ I + (µ+ ν)I + (µ− ν)IT

)
: ∆E

)
(Ni∇X)

= Q

λ I⊗ I : ∆E︸ ︷︷ ︸
tr(∆E)I

+(µ+ ν)I : ∆E︸ ︷︷ ︸
∆E

+(µ− ν)IT : ∆E︸ ︷︷ ︸
∆ET

 (Ni∇X)

= λQtr(∆E) I (Ni∇X)︸ ︷︷ ︸
Ni∇X

+(µ+ ν)Q∆E (Ni∇X) + (µ− ν)Q∆ET (Ni∇X)

= λQtr(∆E) (Ni∇X) + (µ+ ν)Q∆E (Ni∇X) + (µ− ν)Q∆ET (Ni∇X)

= λQ (Ni∇X) tr(∆E) + (µ+ ν)Q∆E (Ni∇X) + (µ− ν)Q∆ET (Ni∇X) .

(G.19)

The three terms in this equation will be now analysed separately.

G.10.1.1 λtr(∆E)Q (Ni∇X)

Using (G.4) we have

tr(∆E) =tr
(
QT
(

∆̂ϕ
T
F + GRAD∆u

))
=tr

(
QT∆̂ϕ

T
F
)

+ tr
(
QTGRAD∆u

)
, (G.20)

with

tr
(
QT∆̂ϕ

T
F
)

= QT∆̂ϕ
T

: FT = ∆̂ϕ
T
F : Q = FQT : ∆̂ϕ = skew(FQT) : ∆̂ϕ =

= tr(skew(FQT)∆̂ϕ
T

) = −tr(skew(FQT)∆̂ϕ) = 2
[
ax(skew(FQT))

]T
∆ϕ,

(G.21)

219



and

tr
(
QTGRAD∆u

)
= tr

(
QT (∆u⊗∇X)

)
= tr

(
QT
(
∆u∇T

X

))
= ∇X · (QT∆u) = ∇T

XQT∆u,

(G.22)

where ∇T
X in (G.22) operates exclusively on ∆u. Finally, we obtain for the first term in

(G.19)

λtr(∆E)Q (Ni∇X) =
(

2
[
ax(skew(FQT))

]T
∆ϕ+∇T

XQT∆u
)
λQ (Ni∇X) . (G.23)

G.10.1.2 (µ+ ν)Q∆E (Ni∇X)

(µ+ ν)Q∆E(Ni∇X) = (µ+ ν) QQT︸ ︷︷ ︸
I

(
∆̂ϕ

T
F + GRAD∆u

)
(Ni∇X)

= (µ+ ν)∆̂ϕ
T
F(Ni∇X) + (µ+ ν)GRAD∆u(Ni∇X)

= −(µ+ ν)∆̂ϕF(Ni∇X) + (µ+ ν)(∆u⊗∇X)(Ni∇X)

= (µ+ ν)F(Ni∇X)
∧

∆ϕ+ (µ+ ν)(∆u∇T
X)(Ni∇X)︸ ︷︷ ︸

scalar

= (µ+ ν)F(Ni∇X)
∧

∆ϕ+ (µ+ ν)∇T
X(Ni∇X)∆u, (G.24)

where ∇T
X in (G.24) operates exclusively on ∆u.

G.10.1.3 (µ− ν)Q∆ET(Ni∇X)

(µ− ν)Q∆ET(Ni∇X) = (µ− ν)Q
(
FT∆̂ϕ+ (∆u⊗∇X)T

)
Q(Ni∇X)

= (µ− ν)QFT∆̂ϕQ(Ni∇X) + (µ− ν)Q(∇X ⊗∆u)Q(Ni∇X)

= −(µ− ν)QFTQ(Ni∇X)
∧

∆ϕ+ (µ− ν)Q∇X ∆uTQ︸ ︷︷ ︸
aT

(Ni∇X)︸ ︷︷ ︸
b

= −(µ− ν)QFTQ(Ni∇X)
∧

∆ϕ+ (µ− ν)Q∇X (Ni∇X)T︸ ︷︷ ︸
bT

QT∆u︸ ︷︷ ︸
a

= −(µ− ν)QFTQ(Ni∇X)
∧

∆ϕ+ (µ− ν)Q∇X(Ni∇X)TQT∆u,

(G.25)

where ∇X in (G.25) operates exclusively on ∆u. Finally, substituting (G.23)-(G.25) in

(G.19) and the result in (G.18) for each subvector we obtain(
∆̂ϕQB + Q (T : ∆E)

)
(Ni∇X)
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= −QB(Ni∇X)
∧

∆ϕ+ λQ(Ni∇X)
(

2
[
ax(skew(FQT))

]T
∆ϕ+∇T

XQT∆u
)

+ (µ+ ν)F(Ni∇X)
∧

∆ϕ+ (µ+ ν)∇T
X(Ni∇X)∆u− (µ− ν)QFTQ(Ni∇X)

∧

∆ϕ

+ (µ− ν)Q∇X(Ni∇X)TQT∆u, (G.26)

i.e. (
∆̂ϕQB + Q (T : ∆E)

)
(Ni∇X)

=
(
λQ(Ni∇X)∇T

XQT + (µ+ ν)∇T
X(Ni∇X)I + (µ− ν)Q∇X(Ni∇X)TQT

)
∆u

+
(
−QB(Ni∇X)
∧

+ λQ(Ni∇X)2
[
ax(skew(FQT))

]T
+ (µ+ ν)F(Ni∇X)
∧

−(µ− ν)QFTQ(Ni∇X)
∧)

∆ϕ, (G.27)

where free ∇X in the factor multiplying ∆u operates only on ∆u.

G.10.2 Term
d

dε

∣∣∣∣
ε=0

(L
(
Nϕ

T∇X

)
)ε

The term L
(
Nϕ

T∇X

)
is derived in (5.7) as

L
(
Nϕ

T∇X

)
=



0

QG(N1∇X)

0

QG(N2∇X)

0
...

0

QG(Nnnode∇X)



. (G.28)

Since from (G.15)

d

dε

∣∣∣∣
ε=0

(QG)ε = ∆̂ϕQG + Q (D : ∆K)

= ∆̂ϕQG + Q
(
D :

(
QTGRAD∆ϕ

))
(G.29)

we obtain
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d

dε

∣∣∣∣
ε=0

(
L
(
Nϕ

T∇X

))
ε

=



0(
∆̂ϕQG + Q

(
D :

(
QTGRAD∆ϕ

)))
(N1∇X)

0(
∆̂ϕQG + Q

(
D :

(
QTGRAD∆ϕ

)))
(N2∇X)

0
...

0(
∆̂ϕQG + Q

(
D :

(
QTGRAD∆ϕ

)))
(Nnnode∇X)



(G.30)

=



0

∆̂ϕQG(N1∇X)

0

∆̂ϕQG(N2∇X)

0
...

0

∆̂ϕQG(Nnnode∇X)



+



0

Q
(
D :

(
QTGRAD∆ϕ

))
(N1∇X)

0

Q
(
D :

(
QTGRAD∆ϕ

))
(N2∇X)

0
...

0

Q
(
D :

(
QTGRAD∆ϕ

))
(Nnnode∇X)



,

(G.31)

where the term ∆̂ϕQG(Ni∇X) can be written as −QG(Ni∇X)
∧

∆ϕ. We substitute the

constitutive tensor D = α I⊗ I + (β + γ)I + (β − γ)IT and obtain the following result

using the same method as in (G.19):

Q (D : ∆K) (Ni∇X) = Q
((
α I⊗ I + (β + γ)I + (β − γ)IT

)
: ∆K

)
(Ni∇X)

= αQ(Ni∇X)tr(∆K) + (β + γ)Q∆K(Ni∇X) + (β − γ)Q∆KT(Ni∇X).

(G.32)

G.10.2.1 αtr(∆K)Q(Ni∇X)

Using (G.9) we obtain

tr(∆K) = tr(QTGRAD∆ϕ)

= tr
(
QT (∆ϕ⊗∇X)

)
= ∇X ·QT∆ϕ

= ∇T
XQT∆ϕ, (G.33)

where ∇T
X in (G.33) operates exclusively on ∆ϕ.
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Thus αQ(Ni∇X)tr(∆K) = αQ(Ni∇X)∇T
XQT∆ϕ.

G.10.2.2 (β + γ)Q∆K(Ni∇X)

(β + γ)Q∆K(Ni∇X) = (β + γ) QQT︸ ︷︷ ︸
I

GRAD∆ϕ(Ni∇X)

= (β + γ)(∆ϕ⊗∇X)(Ni∇X)

= (β + γ)∆ϕ∇T
X(Ni∇X)︸ ︷︷ ︸

scalar

= (β + γ)∇T
X(Ni∇X)∆ϕ, (G.34)

where ∇T
X in (G.34) operates exclusively on ∆ϕ.

G.10.2.3 (β − γ)Q∆KT(Ni∇X)

(β − γ)Q∆KT(Ni∇X) = (β − γ)Q (GRAD∆ϕ)T Q(Ni∇X)

= (β − γ)Q (∆ϕ⊗∇X)T Q(Ni∇X)

= (β − γ)Q
(
∆ϕ∇T

X

)T
Q(Ni∇X)

= (β − γ)Q∇X ∆ϕTQ︸ ︷︷ ︸
aT

(Ni∇X)︸ ︷︷ ︸
b

by using (E.1)

= (β − γ)Q∇X(Ni∇X)TQT∆ϕ, (G.35)

where ∇X in (G.35) operates exclusively on ∆ϕ.

Finally, for each subvector in (G.31) we obtain

∆̂ϕQG(Ni∇X) + Q
(
D :

(
QTGRAD∆ϕ

))
(Ni∇X)

= −QG(Ni∇X)
∧

∆ϕ+ αQ(Ni∇X)∇T
XQT∆ϕ+ (β + γ)∇T

X(Ni∇X)∆ϕ

+ (β − γ)Q∇X(Ni∇X)TQT∆ϕ, (G.36)

i.e.

∆̂ϕQG(Ni∇X) + Q
(
D :

(
QTGRAD∆ϕ

))
(Ni∇X)

=
(
−QG(Ni∇X)
∧

+ αQ(Ni∇X)∇T
XQT + (β + γ)∇T

X(Ni∇X)I + (β − γ)Q∇X(Ni∇X)TQT
)

∆ϕ.

(G.37)
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G.10.3 Term
d

dε

∣∣∣∣
ε=0

(
2Nϕ

Tax
(
skew

(
FBTQT

)))
ε

Consider 2Nϕ
Tax

(
skew

(
FBTQT

))
derived in (F.5):

2Nϕ
Tax

(
skew

(
FBTQT

))
=



0

2N1ax
(
skew

(
FBTQT

))
0

2N2ax
(
skew

(
FBTQT

))
.

.

0

2Nnnodeax
(
skew

(
FBTQT

))


Since ax (skew (A)) = −1

2
ε : A where ε is the third-order permutation tensor (or

Levi-Civita) which may be represented as

ε =



0 0 0

0 0 1

0 −1 0


0 0 −1

0 0 0

1 0 0


 0 1 0

−1 0 0

0 0 0




=

ε1

ε2

ε3

 , (G.38)

the vector 2Niax
(
skew

(
FBTQT

))
can be written as

2Niax
(
skew

(
FBTQT

))
= 2Ni

(
−1

2
ε

)
:
(
FBTQT

)
= −Niε :

(
FBTQT

)
. (G.39)

Next we perform the linearization and obtain

d

dε

∣∣∣∣
ε=0

(
−Niε :

(
FBTQT

))
ε

= −Niε :
(
∆FBTQT + F(∆B)TQT + FBT(∆Q)T

)
= −Niε :

(
GRAD∆uBTQT + F(T : ∆E)TQT + FBTQT∆̂ϕ

T
)
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= −Niε :
(
GRAD∆uBTQT

)
−Niε :

(
F(T : ∆E)TQT

)
−Niε :

(
FBTQT∆̂ϕ

T
)
.

(G.40)

G.10.3.1 −Niε :
(
GRAD∆uBTQT

)

−Niε :
(
GRAD∆uBTQT

)
=−Niε :

((
∆u∇T

X

)
BTQT

)
=−Niε : (∆u⊗ (QB∇X))

=NiQB∇X

∧
∆u, (G.41)

where ∇X in (G.41) operates exclusively on ∆u, because for any a, b ∈ R3

ε : (a⊗ b) = −b̂a = âb. (G.42)

PROOF:

a⊗ b =


a1

a2

a3


{
b1 b2 b3

}
=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 , (G.43)

ε : (a⊗ b) =



0 0 0

0 0 1

0 −1 0


0 0 −1

0 0 0

1 0 0


 0 1 0

−1 0 0

0 0 0




:

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3



=


a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1


=

 0 −a3 a2

a3 0 −a1

−a2 a1 0



b1

b2

b3


= âb. (G.44)

Therefore,
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ε : (a⊗ b) = −b̂a = âb. (G.45)

G.10.3.2 −Niε :
(
F(T : ∆E)TQT

)
We introduce the following relations presented earlier:

T : ∆E = λ tr(∆E)I + (µ+ ν)∆E + (µ− ν)∆ET,

(T : ∆E)T =
(
λ tr(∆E)I + (µ+ ν)∆E + (µ− ν)∆ET

)T

= λ tr(∆E)I + (µ+ ν)∆ET + (µ− ν)∆E,

∆E = QT∆̂ϕ
T
F + QTGRAD(∆u)

∆ET = FT∆̂ϕQ + [GRAD(∆u)]T Q,

tr(∆E) = 2
[
ax(skew(FQT))

]T
∆ϕ+∇T

XQT∆u,

into −Niε :
(
F(T : ∆E)TQT

)
and obtain

−Niε :
(
F(T : ∆E)TQT

)
= −Niε :

(
F(λ tr(∆E)I + (µ+ ν)∆ET + (µ− ν)∆E)QT

)
= −Niε :

(
F(λ tr(∆E)IQT

)
−Niε :

(
F(µ+ ν)∆ETQT

)
−Niε :

(
F(µ− ν)∆EQT

)
.

(G.46)

First term in (G.46):

−Niε :

F(λ tr(∆E)︸ ︷︷ ︸
scalar

IQT


= −Niε :

(
FQT

)
λ tr(∆E)

= −Niε :
(
FQT

)
λ
(

2
[
ax(skew(FQT))

]T
∆ϕ+∇T

XQT∆u
)

|since ε :
(
FQT

)
= −2 ax(skew(FQT))|

= 4λNi ax(skew(FQT))
[
ax(skew(FQT))

]T
∆ϕ+ 2λNi ax(skew(FQT))∇T

XQT∆u,

(G.47)

where ∇T
X in (G.47) operates exclusively on ∆u.

Second term in (G.46):

−Niε :
(
F(µ+ ν)∆ETQT

)
= −Niε :

(
F(µ+ ν)

(
FT∆̂ϕQ + [GRAD∆u]T Q

)
QT
)

= −(µ+ ν)Niε :
(
FFT∆̂ϕQQT + F [GRAD∆u]T QQT

)
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= −(µ+ ν)Niε :
(
FFT∆̂ϕ+ F [GRAD∆u]T

)
= −(µ+ ν)Niε :

(
FFT∆̂ϕ

)
− (µ+ ν)Niε :

(
F [GRAD∆u]T

)
.

The term −(µ+ ν)Niε :
(
FFT∆̂ϕ

)
can be written as

−(µ+ ν)Niε :
(
FFT∆̂ϕ

)
= −(µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆ϕ, (G.48)

because for any A, b̂

ε :
(
Ab̂
)

=
(
AT − tr(A)I

)
b. (G.49)

PROOF:

Ab̂ =

A11 A12 A13

A21 A22 A23

A31 A32 A33


 0 −b3 b2

b3 0 −b1

−b2 b1 0



=

A12b3 − A13b2 −A11b3 + A13b1 A11b2 − A12b1

A22b3 − A23b2 −A21b3 + A23b1 A21b2 − A22b1

A32b3 − A33b2 −A31b3 + A33b1 A31b2 − A32b1



ε :
(
Ab̂
)

=



0 0 0

0 0 1

0 −1 0


0 0 −1

0 0 0

1 0 0


 0 1 0

−1 0 0

0 0 0




:

A12b3 − A13b2 −A11b3 + A13b1 A11b2 − A12b1

A22b3 − A23b2 −A21b3 + A23b1 A21b2 − A22b1

A32b3 − A33b2 −A31b3 + A33b1 A31b2 − A32b1



=


A21b2 − A22b1 + A31b3 − A33b1

−A11b2 + A12b1 + A32b3 − A33b2

−A11b3 + A13b1 − A22b3 + A23b2


=


(−A22 − A33)b1 + A21b2 + A31b3

A12b1 + (−A11 − A33)b2 + A32b3

A13b1 + A23b2 + (−A11 − A22)b3


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=

(−A22 − A33) A21 A31

A12 (−A11 − A33) A32

A13 A23 (−A11 − A22)



b1

b2

b3



=


A11 A21 A31

A12 A22 A32

A13 A23 A33


︸ ︷︷ ︸

AT

−

A11 + A22 + A33 0 0

0 A11 + A22 + A33 0

0 0 A11 + A22 + A33


︸ ︷︷ ︸

tr(A)I



b1

b2

b3


=
(
AT − tr(A)I

)
b

Furthermore, since

−(µ+ ν)Niε :
(
F [GRAD∆u]T

)
= −(µ+ ν)Niε :

(
F (∆u⊗∇X)T

)
= −(µ+ ν)Niε : (F (∇X ⊗∆u))

|since ε : A = −ε : AT|

= (µ+ ν)Niε : (F (∇X ⊗∆u))T

= (µ+ ν)Niε : (∆u⊗ F∇X)

|by using (G.45)|

= −(µ+ ν)NiF∇X

∧
∆u, (G.50)

where ∇X in (G.50) operates exclusively on ∆u, we obtain for the second term in (G.46)

−Niε :
(
F(µ+ ν)∆ETQT

)
= −(µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆ϕ− (µ+ ν)NiF∇X

∧
∆u.

(G.51)

Third term in (G.46):

−Niε :
(
F(µ− ν)∆EQT

)
= −(µ− ν)Niε :

(
F
(
QT∆̂ϕ

T
F + QTGRAD∆u

)
QT
)

= −(µ− ν)Niε :
(
FQT∆̂ϕ

T
FQT + FQTGRAD∆uQT

)
= −(µ− ν)Niε :

(
FQT∆̂ϕ

T
FQT

)
− (µ− ν)Niε :

(
FQTGRAD∆uQT

)
(G.52)

First term in (G.52):
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− (µ− ν)Niε :
(
FQT∆̂ϕ

T
FQT

)
= (µ− ν)Niε :

(
FQT∆̂ϕFQT

)
= (µ− ν)Ni

[
ax(2skew(FQTε1FQT)) ax(2skew(FQTε2FQT)) ax(2skew(FQTε3FQT))

]
∆ϕ

where skew(FQTεiFQT) =
1

2

(
FQTεiFQT − (FQTεiFQT)T

)
, since

ε :
(
Ab̂A

)
= [ax(2skew(Aε1A)) ax(2skew(Aε2A)) ax(2skew(Aε3A))]︸ ︷︷ ︸

2nd order tensor

b (G.53)

for any second-order 3D tensor A and a first order 3D tensor b with εi as a second order

3D tensor forming a part of the third order permutation tensor ε as shown in (G.38).
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PROOF:

Ab̂A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


 0 −b3 b2

b3 0 −b1

−b2 b1 0


A11 A12 A13

A21 A22 A23

A31 A32 A33



=

A12b3 − A13b2 −A11b3 + A13b1 A11b2 − A12b1

A22b3 − A23b2 −A21b3 + A23b1 A21b2 − A22b1

A32b3 − A33b2 −A31b3 + A33b1 A31b2 − A32b1


A11 A12 A13

A21 A22 A23

A31 A32 A33


=

(A12b3 − A13b2)A11 + (−A11b3 + A13b1)A21 + (A11b2 − A12b1)A31 (A12b3 − A13b2)A12 + (−A11b3 + A13b1)A22 + (A11b2 − A12b1)A32 (A12b3 − A13b2)A13 + (−A11b3 + A13b1)A23 + (A11b2 − A12b1)A33

(A22b3 − A23b2)A11 + (−A21b3 + A23b1)A21 + (A21b2 − A22b1)A31 (A22b3 − A23b2)A12 + (−A21b3 + A23b1)A22 + (A21b2 − A22b1)A32 (A22b3 − A23b2)A13 + (−A21b3 + A23b1)A23 + (A21b2 − A22b1)A33

(A32b3 − A33b2)A11 + (−A31b3 + A33b1)A21 + (A31b2 − A32b1)A31 (A32b3 − A33b2)A12 + (−A31b3 + A33b1)A22 + (A31b2 − A32b1)A32 (A32b3 − A33b2)A13 + (−A31b3 + A33b1)A23 + (A31b2 − A32b1)A33



ε :
(
Ab̂A

)
=


(A22b3 − A23b2)A13 + (−A21b3 + A23b1)A23 + (A21b2 − A22b1)A33 − [(A32b3 − A33b2)A12 + (−A31b3 + A33b1)A22 + (A31b2 − A32b1)A32]

− [(A12b3 − A13b2)A13 + (−A11b3 + A13b1)A23 + (A11b2 − A12b1)A33] + (A32b3 − A33b2)A11 + (−A31b3 + A33b1)A21 + (A31b2 − A32b1)A31

(A12b3 − A13b2)A12 + (−A11b3 + A13b1)A22 + (A11b2 − A12b1)A32 − [(A22b3 − A23b2)A11 + (−A21b3 + A23b1)A21 + (A21b2 − A22b1)A31]


=


(A2

23 + A2
32 − 2A22A33) b1 + (A33(A12 + A21)− A23A13 − A31A32) b2 + (A22(A13 + A31)− A21A23 − A32A12) b3

(A33(A12 + A21)− A13A23 − A32A31) b1 + (A2
13 + A2

31 − 2A11A33) b2 + (A11(A23 + A32)− A12A13 − A31A21) b3

(A22(A13 + A31)− A12A32 − A23A21) b1 + (A11(A32 + A23)− A12A13 − A31A21) b2 + (A2
12 + A2

21 − 2A11A22) b3


=

 A2
23 + A2

32 − 2A22A33 A33(A12 + A21)− A23A13 − A31A32 A22(A13 + A31)− A21A23 − A32A12

A33(A12 + A21)− A13A23 − A32A31 A2
13 + A2

31 − 2A11A33 A11(A23 + A32)− A12A13 − A31A21

A22(A13 + A31)− A12A32 − A23A21 A11(A32 + A23)− A12A13 − A31A21 A2
12 + A2

21 − 2A11A22



b1

b2

b3



230



Now we analyse the term

2skew(Aε1A) = Aε1A−ATεT
1 AT

Aε1A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


0 0 0

0 0 1

0 −1 0


A11 A12 A13

A21 A22 A23

A31 A32 A33



=

−A13A21 + A12A31 −A13A22 + A12A32 −A13A23 + A12A33

−A23A21 + A22A31 −A23A22 + A22A32 −A2
23 + A22A33

−A33A21 + A32A31 −A33A22 + A2
32 −A33A23 + A32A33

 ,

ATεT
1 AT = (Aε1A)T

=

A31A12 − A21A13 A31A22 − A21A23 A31A32 − A21A33

A32A12 − A22A13 A32A22 − A22A23 A2
32 − A22A33

A33A12 − A23A13 A33A22 − A2
23 A33A32 − A23A33

 ,

2skew(Aε1A)

= Aε1A−ATεT
1 AT

=

−A13A21 + A12A31 −A13A22 + A12A32 −A13A23 + A12A33

−A23A21 + A22A31 −A23A22 + A22A32 −A2
23 + A22A33

−A33A21 + A32A31 −A33A22 + A2
32 −A33A23 + A32A33

−
A31A12 − A21A13 A31A22 − A21A23 A31A32 − A21A33

A32A12 + A22A13 A32A22 − A22A23 A2
32 − A22A33

A33A12 + A23A13 A33A22 − A2
23 A33A32 − A23A33



=

 0 −A22(A31 + A13) + A23A21 + A32A12 A33(A12 + A21)− A13A23 − A31A32

A22(A31 + A13)− A23A21 − A32A12 0 −A2
23 − A2

32 + 2A22A33

−A33(A12 + A21) + A13A23 + A31A32 A2
23 + A2

32 − 2A22A33 0


︸ ︷︷ ︸

m̂1

leading to the conclusion that

ax(m̂1) =


A2

23 + A2
32 − 2A22A33

A33(A12 + A21)− A13A23 − A31A32

A22(A31 + A13)− A23A21 − A32A12

⇒m1 = ax (2skew(Aε1A)) . (G.54)
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The vector m1 can be recognized in the derived expression:

ε :
(
Ab̂A

)
=

 A2
23 + A2

32 − 2A22A33 A33(A12 + A21)− A23A13 − A31A32 A22(A13 + A31)− A21A23 − A32A12

A33(A12 + A21)− A13A23 − A32A31 A2
13 + A2

31 − 2A11A33 A11(A23 + A32)− A12A13 − A31A21

A22(A13 + A31)− A12A32 − A23A21 A11(A32 + A23)− A12A13 − A31A21 A2
12 + A2

21 − 2A11A22



b1

b2

b3


as the first column in the matrix. By analogy we obtain

m2 =


A33(A12 + A21)− A23A13 − A31A32

A2
13 + A2

31 − 2A11A33

A11(A32 + A23)− A12A13 − A31A21

 , m3 =


A22(A13 + A31)− A21A23 − A32A12

A11(A23 + A32)− A12A13 − A31A21

A2
12 + A2

21 − 2A11A22

 ,

where m2 = ax (2skew(Aε2A)) and m3 = ax (2skew(Aε3A)). Finally, we obtain

ε :
(
Ab̂A

)
= [m1 m2 m3] b

= [ax(2skew(Aε1A)) ax(2skew(Aε2A)) ax(2skew(Aε3A))] b.

Second term in (G.52):

−(µ− ν)Niε :
(
FQTGRAD(∆u)QT

)
= −(µ− ν)Niε :

(
FQT(∆u⊗∇X)QT

)
= −(µ− ν)Niε :

FQT∆u︸ ︷︷ ︸
vector

∇T
XQT︸ ︷︷ ︸

vectorT


= −(µ− ν)Niε :

(
(FQT∆u)⊗ (Q∇X)

)
|by using ε : (a⊗ b) = −b̂a = âb|

= (µ− ν)NiQ∇X

∧
FQT∆u, (G.55)

where ∇X in (G.55) operates exclusively on ∆u.

Finally, we obtain

−Niε :
(
F(µ− ν)∆EQT

)
= −(µ− ν)Niε :

(
FQT∆̂ϕ

T
FQT

)
− (µ− ν)Niε :

(
FQTGRAD∆uQT

)
= (µ− ν)Ni

[
ax(2skew(FQTε1FQT)) ax(2skew(FQTε2FQT)) ax(2skew(FQTε3FQT))

]
∆ϕ

+ (µ− ν)NiQ∇X

∧
FQT∆u. (G.56)
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G.10.3.3 −Niε :
(
FBTQT∆̂ϕ

T
)

By applying (G.49) we obtain:

−Niε :
(
FBTQT∆̂ϕ

T
)

= Niε :
(
FBTQT∆̂ϕ

)
(G.57)

= Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]

∆ϕ. (G.58)

Now we recall (G.40)

d

dε

∣∣∣∣
ε=0

(
−Niε :

(
FBTQT

))
ε

= −Niε :
(
GRAD(∆u)BTQT

)
−Niε :

(
F(T : ∆E)TQT

)
−Niε :

(
FBTQT∆̂ϕ

T
)
,

and substitute the following derived terms:

−Niε :
(
GRAD(∆u)BTQT

)
= NiQB∇X

∧
∆u, derived in Section (G.10.3.1)

−Niε :
(
F(T : ∆E)TQT

)
= −Niε :

(
F(λ tr(∆E)IQT

)
−Niε :

(
F(µ+ ν)∆ETQT

)
−Niε :

(
F(µ− ν)∆EQT

)
= 4λNi ax(skew(FQT))

[
ax(skew(FQT))

]T
∆ϕ+ 2λNi ax(skew(FQT))∇T

XQT∆u︸ ︷︷ ︸
−Niε:(F(λ tr(∆E)IQT)

−(µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆ϕ− (µ+ ν)NiF∇X

∧
∆u︸ ︷︷ ︸

−Niε:(F(µ+ν)∆ETQT)

+ (µ− ν)Ni

[
ax(2skew(FQTε1FQT)) ax(2skew(FQTε2FQT)) ax(2skew(FQTε3FQT))

]
∆ϕ

+ (µ− ν)NiQ∇X

∧
FQT∆u, derived in Section (G.10.3.2)

−Niε :
(
FBTQT∆̂ϕ

T
)

= Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]

∆ϕ, derived in Section (G.10.3.3).

Finally, (G.40) follows as

d

dε

∣∣∣∣
ε=0

(
−Niε :

(
FBTQT

))
ε

= NiQB∇X

∧
∆u + 4λNi ax(skew(FQT))

[
ax(skew(FQT))

]T
∆ϕ

+ 2λNi ax(skew(FQT))∇T
XQT∆u− (µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆ϕ

− (µ+ ν)NiF∇X

∧
∆u
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+ (µ− ν)Ni

[
ax(2skew(FQTε1FQT)) ax(2skew(FQTε2FQT)) ax(2skew(FQTε3FQT))

]
∆ϕ

+ (µ− ν)NiQ∇X

∧
FQT∆u +Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]

∆ϕ,

where all ∇X operate on ∆u.
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Appendix H

Validation of the derived formulation

In order to check the validity of the derived formulation we observe the undeformed configuration, i.e.

u = 0, ϕ = 0, B = 0, G = 0, F = I, Q = I, (H.1)

leading to

` = ax(skew(FQT)) = ax(
1

2
(I− IT)) = 0, (H.2)

and

[m1 m2 m3] = [ax(2skew(Iε1I)) ax(2skew(Iε2I)) ax(2skew(Iε3I))][
ax(Iε1I− (Iε1I)T) ax(Iε2I− (Iε2I)T) ax(Iε3I− (Iε3I)T)

]
=

ax


0 0 0

0 0 2

0 −2 0


 ax


0 0 −2

0 0 0

2 0 0


 ax


 0 2 0

−2 0 0

0 0 0




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=

−2 0 0

0 −2 0

0 0 −2


= −2I

Thus, in the undeformed configuration the element incremental nodal residual reduces to

∆gei =


−I0(Ni∇X)
∧

∆ϕ+ λI(Ni∇X)20T∆ϕ+ λI(Ni∇X)∇T
XIT∆u + (µ+ ν)I(Ni∇X)
∧

∆ϕ+ (µ+ ν)∇T
X(Ni∇X)∆u− (µ− ν)IITI(Ni∇X)

∧

∆ϕ+ (µ− ν)I∇X(Ni∇T
X)IT∆u

−I0(Ni∇X)
∧

∆ϕ+ αI(Ni∇X)∇T
XIT∆ϕ+ (β + γ)∇T

X(Ni∇X)∆ϕ+ (β − γ)I∇X(Ni∇T
X)IT∆ϕ+ �������

NiI0∇X

∧
∆u + 4λNi 00T∆ϕ+ 2λNi 0∇T

XIT∆u + . . .

. . . − (µ+ ν)Ni

(
IIT − tr(IIT)I

)
∆ϕ− (µ+ ν)NiI∇X

∧
∆u− 2(µ− ν)NiI∆ϕ+ (µ− ν)NiI∇X

∧
IIT∆u +Ni

[(
I0TIT

)T − tr
(
I0TIT

)
I
]

∆ϕ


=

{
λ(Ni∇X)∇T

X∆u + (µ+ ν)(Ni∇X)
∧

∆ϕ+ (µ+ ν)∇T
X(Ni∇X)∆u− (µ− ν)(Ni∇X)

∧

∆ϕ+ (µ− ν)∇X(Ni∇T
X)∆u

α(Ni∇X)∇T
X∆ϕ+ (β + γ)∇T

X(Ni∇X)∆ϕ+ (β − γ)∇X(Ni∇T
X)∆ϕ+ 2(µ+ ν)NiI∆ϕ− (µ+ ν)Ni∇X

∧
∆u− 2(µ− ν)NiI∆ϕ+ (µ− ν)Ni∇X

∧
∆u

}

=


(
λ(Ni∇X)∇T

X + (µ+ ν)∇T
X(Ni∇X) + (µ− ν)∇X(Ni∇T

X)
)

∆u +
(

(µ+ ν)(Ni∇X)
∧

− (µ− ν)(Ni∇X)
∧)

∆ϕ(
(µ− ν)Ni∇X

∧
− (µ+ ν)Ni∇X

∧)
∆u +

(
α(Ni∇X)∇T

X + (β + γ)∇T
X(Ni∇X) + (β − γ)∇X(Ni∇T

X) + 2(µ+ ν)NiI− 2(µ− ν)NiI
)

∆ϕ


=

[
λ(Ni∇X)∇T

X + (µ+ ν)∇T
X(Ni∇X)I + (µ− ν)∇X(Ni∇T

X) (µ+ ν)(Ni∇X)
∧

− (µ− ν)(Ni∇X)
∧

(µ− ν)Ni∇X

∧
− (µ+ ν)Ni∇X

∧
α(Ni∇X)∇T

X + (β + γ)∇T
X(Ni∇X)I + (β − γ)∇X(Ni∇T

X) + 4νNiI

]{
∆u

∆ϕ

}

=

[
λ(Ni∇X)∇T

X + (µ+ ν)∇T
X(Ni∇X)I + (µ− ν)∇X(Ni∇T

X) 2ν(Ni∇X)
∧

−2ν(Ni∇X)
∧

α(Ni∇X)∇T
X + (β + γ)∇T

X(Ni∇X)I + (β − γ)∇X(Ni∇T
X) + 4νNiI

]{
∆u

∆ϕ

}

Now we introduce the interpolation of the kinematic fields (5.31) and obtain

∆gi =
nnode∑
j=1

[
λ(Ni∇X)(Nj∇T

X) + (µ+ ν)(Nj∇T
X)(Ni∇X)I + (µ− ν)(Nj∇X)(Ni∇T

X) 2ν(Ni∇X)
∧

Nj

−2ν(Ni∇X)
∧

Nj α(Ni∇X)(Nj∇T
X) + (β + γ)(Nj∇T

X)(Ni∇X)I + (β − γ)(Nj∇X)(Ni∇T
X) + 4νNiNjI

]{
∆uej

∆ϕej

}
,
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By introducing the following

(Ni∇X) =


∂Ni
∂X1

∂Ni
∂X2

∂Ni
∂X3

 , (Nj∇T
X) =

〈
∂Nj

∂X1

∂Nj

∂X2

∂Nj

∂X3

〉
, (Ni∇X)
∧

=

 0 − ∂Ni
∂X3

∂Ni
∂X2

∂Ni
∂X3

0 − ∂Ni
∂X1

− ∂Ni
∂X2

∂Ni
∂X1

0

 , (H.3)

(Nj∇T
X)(Ni∇X)I =


∂Ni
∂X1

∂Nj
∂X1

+ ∂Ni
∂X2

∂Nj
∂X2

+ ∂Ni
∂X3

∂Nj
∂X3

0 0

0 ∂Ni
∂X1

∂Nj
∂X1

+ ∂Ni
∂X2

∂Nj
∂X2

+ ∂Ni
∂X3

∂Nj
∂X3

0

0 0 ∂Ni
∂X1

∂Nj
∂X1

+ ∂Ni
∂X2

∂Nj
∂X2

+ ∂Ni
∂X3

∂Nj
∂X3

 , (H.4)

(Ni∇X)(Nj∇T
X) =


∂Ni
∂X1

∂Ni
∂X2

∂Ni
∂X3


〈
∂Nj

∂X1

∂Nj

∂X2

∂Nj

∂X3

〉
=


∂Ni
∂X1

∂Nj
∂X1

∂Ni
∂X1

∂Nj
∂X2

∂Ni
∂X1

∂Nj
∂X3

∂Ni
∂X2

∂Nj
∂X1

∂Ni
∂X2

∂Nj
∂X2

∂Ni
∂X2

∂Nj
∂X3

∂Ni
∂X3

∂Nj
∂X1

∂Ni
∂X3

∂Nj
∂X2

∂Ni
∂X3

∂Nj
∂X3

 , (H.5)

(Nj∇X)(Ni∇T
X) =


∂Nj
∂X1
∂Nj
∂X2
∂Nj
∂X3


〈
∂Ni

∂X1

∂Ni

∂X2

∂Ni

∂X3

〉
=


∂Nj
∂X1

∂Ni
∂X1

∂Nj
∂X1

∂Ni
∂X2

∂Nj
∂X1

∂Ni
∂X3

∂Nj
∂X2

∂Ni
∂X1

∂Nj
∂X2

∂Ni
∂X2

∂Nj
∂X2

∂Ni
∂X3

∂Nj
∂X3

∂Ni
∂X1

∂Nj
∂X3

∂Ni
∂X2

∂Nj
∂X3

∂Ni
∂X3

 , (H.6)

we obtain

∆gi =
8∑
j=1

[
Kmu1 Kmϕ

Kmϕ

T Kmu2

]{
∆uej

∆ϕej

}
,

where
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Kmu1 =λ


∂Ni
∂X1

∂Nj
∂X1

∂Ni
∂X1

∂Nj
∂X2

∂Ni
∂X1

∂Nj
∂X3

∂Ni
∂X2

∂Nj
∂X1

∂Ni
∂X2

∂Nj
∂X2

∂Ni
∂X2

∂Nj
∂X3

∂Ni
∂X3

∂Nj
∂X1

∂Ni
∂X3

∂Nj
∂X2

∂Ni
∂X3

∂Nj
∂X3

+ (µ+ ν)

(
∂Ni

∂X1

∂Nj

∂X1

+
∂Ni

∂X2

∂Nj

∂X2

+
∂Ni

∂X3

∂Nj

∂X3

)1 0 0

0 1 0

0 0 1

+ (µ− ν)


∂Nj
∂X1

∂Ni
∂X1

∂Nj
∂X1

∂Ni
∂X2

∂Nj
∂X1

∂Ni
∂X3

∂Nj
∂X2

∂Ni
∂X1

∂Nj
∂X2

∂Ni
∂X2

∂Nj
∂X2

∂Ni
∂X3

∂Nj
∂X3

∂Ni
∂X1

∂Nj
∂X3

∂Ni
∂X2

∂Nj
∂X3

∂Ni
∂X3



=


(λ+ 2µ) ∂Ni

∂X1

∂Nj
∂X1

+ (µ+ ν)
(
∂Ni
∂X2

∂Nj
∂X2

+ ∂Ni
∂X3

∂Nj
∂X3

)
λ ∂Ni
∂X1

∂Nj
∂X2

+ (µ− ν) ∂Ni
∂X2

∂Nj
∂X1

λ ∂Ni
∂X1

∂Nj
∂X3

+ (µ− ν) ∂Ni
∂X3

∂Nj
∂X1

λ ∂Ni
∂X2

∂Nj
∂X1

+ (µ− ν) ∂Ni
∂X1

∂Nj
∂X2

(λ+ 2µ) ∂Ni
∂X2

∂Nj
∂X2

+ (µ+ ν)
(
∂Ni
∂X1

∂Nj
∂X1

+ ∂Ni
∂X3

∂Nj
∂X3

)
λ ∂Ni
∂X2

∂Nj
∂X3

+ (µ− ν) ∂Ni
∂X3

∂Nj
∂X2

λ ∂Ni
∂X3

∂Nj
∂X1

+ (µ− ν) ∂Ni
∂X1

∂Nj
∂X3

λ ∂Ni
∂X3

∂Nj
∂X2

+ (µ− ν) ∂Ni
∂X2

∂Nj
∂X3

(λ+ 2µ) ∂Ni
∂X3

∂Nj
∂X3

+ (µ+ ν)
(
∂Ni
∂X1

∂Nj
∂X1

+ ∂Ni
∂X2

∂Nj
∂X2

)
,

Kmu2 =α


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(
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+
∂Ni

∂X2

∂Nj

∂X2

+
∂Ni

∂X3

∂Nj

∂X3

)1 0 0

0 1 0

0 0 1

+ (β − γ)
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=
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(α + 2β) ∂Ni
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∂Nj
∂X1

+ (β + γ)
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∂Ni
∂X2

∂Nj
∂X2

+ ∂Ni
∂X3

∂Nj
∂X3

)
+ 4νNiNj α ∂Ni
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∂Nj
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α ∂Ni
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∂X3

+ (β − γ) ∂Ni
∂X3

∂Nj
∂X1

α ∂Ni
∂X2

∂Nj
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+ (β − γ)
∂Nj
∂X2

∂Ni
∂X1

(α + 2β) ∂Ni
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+ (β + γ)
(
∂Ni
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∂Nj
∂X1

+ ∂Ni
∂X3

∂Nj
∂X3

)
+ 4νNiNj α ∂Ni

∂X2

∂Nj
∂X3

+ (β − γ) ∂Ni
∂X3

∂Nj
∂X2

α ∂Ni
∂X3

∂Nj
∂X1

+ (β − γ) ∂Ni
∂X1

∂Nj
∂X3

α ∂Ni
∂X3

∂Nj
∂X2

+ (β − γ) ∂Ni
∂X2

∂Nj
∂X3
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∂X3

∂Nj
∂X3

+ (β + γ)
(
∂Ni
∂X1

∂Nj
∂X1

+ ∂Ni
∂X2

∂Nj
∂X2

)
+ 4νNiNj

,

and

Kmϕ = 2νNj

 0 − ∂Ni
∂X3

∂Ni
∂X2

∂Ni
∂X3

0 − ∂Ni
∂X1

− ∂Ni
∂X2

∂Ni
∂X1

0

 =

 0 −2ν ∂Ni
∂X3

Nj 2ν ∂Ni
∂X2

Nj

2ν ∂Ni
∂X3

Nj 0 −2ν ∂Ni
∂X1

Nj

−2ν ∂Ni
∂X2

Nj 2ν ∂Ni
∂X1

Nj 0

 .
It is observed that the obtained element material stiffness matrix coincides with the stiffness matrix derived in the linear analysis, as

expected.

238



Bibliography

[1] R.D. Gauthier and W. E. Jahsman. A Quest for Micropolar Elastic Constants.

Journal of Applied Mechanics, 42(2):369–374, 1975.

[2] J. Argyris. An excursion into large rotations. Computer Methods in Applied Mechan-

ics and Engineering, 32(1-3):85–155, sep 1982.

[3] L. E. Malvern. Introduction to the mechanics of a continious medium. Prentice-Hall,

Inc, New Jersey, 1969.

[4] W. Nowacki. Theory of micropolar elasticity. Springer-Verlag, Vienna, 1972.

[5] R. S. Lakes. Size effects and micromechanics of a porous solid. Journal of Materials

Science, 18:2572–2580, 1983.

[6] R. S. Lakes. Experimental Microelasticity of two porous solids. International Journal

of Solids and Structures, 22(1):55–63, 1986.

[7] W. B. Anderson and R. S. Lakes. Size effects due to Cosserat elasticity and sur-

face damage in closed-cell polymethacrylimide foam. Journal of Materials Science,

29(24):6413–6419, 1994.

[8] L. Toubal, M. Karama, and B. Lorrain. Stress concentration in a circular hole in

composite plate. Composite Structures, 68(1):31–36, 2005.

[9] A. R. Hadjesfandiari and G. F. Dargush. Couple stress theory for solids. International

Journal of Solids and Structures, 48(18):2496–2510, sep 2011.

[10] R. D. Mindlin and N. N. Eshel. On first strain-gradient theories in linear elasticity.

International Journal of Solids and Structures, 4(1):109–124, 1968.

[11] A. C. Eringen. Microcontinuum Field Theories: I. Foundations and Solids. Springer-

Verlag, New York, 2012.

[12] E. Cosserat and F. Cosserat. Théorie des corps déformables. Herman, Paris, 1909.
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nazija Andrije Mohorovičića in Rijeka from 2005 to 2009. Attended Faculty of Civil

Engineering at the University of Rijeka from 2009 to 2014 and obtained a bachelor and

a master’s (suma cum laude) degree in the field of construction-geotechnical engineering.

In 2011 was awarded with a scholarship for a student exchange program given by the

University of Rijeka Foundation in association with The Lions Club and took part in a

Student Exchange Camp in Japan for one month. Since 2011 was the President of the

Student Union of the Faculty of Civil Engineering in Rijeka and in 2013 was awarded with

the Dean award for volunteering. During master studies worked as a trainee at the ar-

chitecture and design company Dzeta in Tunisia through an Iaeste internship programme

for three months. The last year of her master studies was working for the international

turnkey contractor company in the oil and gas industry Saipem. Her master thesis entitled

Offshore geotechnical engineering design represents a feasibility study for constructing off-

shore and near shore objects needed for pipeline instalation and was made in conjuction

with Saipem.

After graduation, enrolled the postgraduate doctoral study programme in Civil Engi-

neering in the field of Engineering mechanics and started working full-time as a research

assistant at the University of Rijeka, Faculty of Civil Engineering within the scientific

projects Configuration-dependent Approximation in Non-linear Finite-element Analysis of

Structures (HRZZ-IP-11-2013-1631) and Young Researchers Career Development Project

- Training of Doctoral Students financed by the Croatian Science Foundation under the
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