Title A Model for Skid Resistance Prediction Based on Non-Standard Pavement Surface Texture Parameters
Title (croatian) Model predikcije hvatljivosti temeljen na nestandardnim parametrima teksture kolnika
Author Ivana Pranjić MBZ: 365665
Mentor Aleksandra Deluka Tibljaš (mentor) MBZ: 220546
Mentor Igor Ružić (komentor) MBZ: 274653
Committee member Sanja Šurdonja (predsjednik povjerenstva) MBZ: 268061
Committee member Ivana Barišić (član povjerenstva) MBZ: 294600
Committee member Ivica Kožar (član povjerenstva) MBZ: 146206
Granter University of Rijeka Faculty of Civil Engineering Rijeka
Defense date and country 2023, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Civil Engineering Transportation
Universal decimal classification (UDC ) 624/625 - Civil and structural engineering. Civil engineering of land transport. Railway engineering. Highway engineering
Abstract The research presented in this thesis focused on the development of a prediction model for friction performance of asphalt pavements quantified as skid resistance, accounting for the nonstandard texture parameters. Pavement friction results from a complex interplay of many influencing parameters that can be grouped in four distinct groups: surface roughness properties, driving properties, vehicle tire properties and environmental influences. Surface roughness properties were selected as the key influencing factor in this research. There are two specific texture roughness scales relevant for pavement's friction performance: micro-texture and macro-texture. Current standardized practice enables the determination of macro-texture indicators, commonly related to friction performance measured on the roads. Despite the effort to establish a relationship between the standard texture indicators and friction performance, there still exists no unique model which would provide a reliable and unambiguous prediction of friction from the traditionally determined texture roughness properties. To investigate the relationship between pavement friction performance and surface roughness on both relevant texture scales, an alternative method based on remote sensing technology was developed in this thesis. The method utilized a digital camera for the acquisition of multiple pavement surface images from a close range, further used for the creation of a 3D digital surface model. The method was called Close-Range Orthogonal Photogrammetry - CROP method. Created 3D digital surface models enabled the analysis of multiple roughness parameters on micro- and macro-texture levels. The CROP method was optimized for the data acquisition procedure, photographic equipment used and procedure for digital surface model processing and analysis. The accuracy of CROP method was verified by performance comparison to a benchmark technology for 3D digital model creation – a high precision 3D laser scanner. Selected non-standard texture parameters were used as predictors in the development of a friction prediction model, performed in regression analysis framework. Friction performance was quantified by skid resistance measurements of the analysed surfaces, performed by a stationary low-speed measurement device. Four different regression-based models were established and compared for the model performance assessment, accounting for the model predictive strength evaluated by coefficient of determination values and selected error metric. The optimal model was defined by partial least squares regression, with two non-standard texture parameters selected as the most influential for the prediction of pavement surface friction performance. In comparison to the performance of simple linear regression model accounting for a single traditional texture indicator Mean Profile Depth, the model developed in the thesis obtained better performance for the prediction of skid resistance.
Abstract (english) Istraživanje predstavljeno u ovom doktorskom radu usmjereno je na razvoj modela predikcije hvatljivosti, uzimajući u obzir nestandardne parametre teksture kolnika. Hvatljivost na kolniku složen je fenomen koji proizlazi iz međusobnog djelovanja mnogih utjecajnih parametara koji se mogu grupirati u četiri različite skupine: svojstva hrapavosti površine, svojstva vožnje, svojstva pneumatika vozila i utjecaji okoliša. Svojstva hrapavosti površine odabrana su kao ključni utjecajni faktor u ovom istraživanju. Dvije su specifične razine hrapavosti teksture relevantne za hvatljivost: mikrotekstura i makrotekstura. Standardizirana praksa omogućuje određivanje pokazatelja makroteksture, koji se uobičajeno povezuju sa izmjerenim svojstvom hvatljivosti na kolniku. Unatoč naporima da se uspostavi odnos između standardnih pokazatelja teksture i hvatljivosti, još uvijek ne postoji jedinstveni model koji bi pružio pouzdano i nedvosmisleno predviđanje hvatljivosti iz tradicionalno određenih svojstava hrapavosti teksture. Kako bi se istražio odnos između hvatljivosti kolnika i hrapavosti površine na obje relevantne razine teksture, u ovom je doktorskom radu razvijena alternativna metoda temeljena na tehnologiji daljinskih istraživanja. U metodi je korištena digitalna kamera za prikupljanje većeg broja fotografija površine kolnika iz neposredne blizine, koje se dalje koriste za izradu trodimenzionalnog digitalnog modela površine. Metoda je nazvana Close-Range Orthogonal Photogrammetry (Ortogonalna fotogrametrija bliskog dometa) - CROP metoda. Izrađeni trodimenzionalni digitalni modeli površina omogućili su analizu nekoliko parametara hrapavosti na razini mikro i makro teksture. CROP metoda optimizirana je za postupak prikupljanja podataka, korištenu fotografsku opremu te postupak obrade i analize digitalnog modela površine. Točnost CROP metode potvrđena je usporedbom sa referentnom tehnologijom za kreiranje 3D digitalnog modela – 3D laserskim skenerom visoke preciznosti. Odabrani nestandardni parametri teksture korišteni su kao ulazni parametri u razvoju modela predikcije hvatljivosti, izvedenog u okviru regresijske analize. Hvatljivost je kvantificirana mjerenjem otpora klizanja analiziranih površina standardnim stacionarnim mjernim uređajem pri malim brzinama. Četiri različita regresijska modela uspostavljena su i uspoređena za procjenu izvedbe modela, uzimajući u obzir snagu predviđanja modela procijenjenu iz koeficijenta determinacije i odabrane metrike pogreške. Optimalni model definiran je djelomičnom regresijom najmanjih kvadrata, s dva nestandardna parametra teksture odabranima kao najutjecajnijima za predviđanje hvatljivosti. U usporedbi sa jednostavnim modelom linearne regresije, koji uzima u obzir samo srednju dubinu profila kao tradicionalni indikator teksture, model predikcije hvatljivosti razvijen u ovom doktorskom radu postigao je bolju izvedbu.
Keywords
pavement friction
skid resistance
pavement texture
experimental analysis
closerange photogrammetry
digital surface models
non-standard texture parameters
regression analysis framework
partial least squares
prediction model
Keywords (croatian)
trenje na kolniku
otpor klizanju
tekstura kolnika
eksperimentalna analiza
fotogrametrija bliskog dometa
digitalni modeli površine
nestandardni parametri teksture
regresijska analiza
djelomični najmanji kvadrati
model predviđanja
Language english
URN:NBN urn:nbn:hr:157:259777
Promotion 2023
Study programme Title: Civil Engineering; specializations in: Hydrotechnics and geotechnics, Mechanics Course: Hydrotechnics and geotechnics Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, područje tehničkih znanosti (doktor/doktorica znanosti, područje tehničkih znanosti)
Catalog URL http://opak.crolib.hr/cgi-bin/unicat.cgi?form=D1581705033
Type of resource Text
Extent X, 241 str.; 31 cm
File origin Born digital
Access conditions Open access
Terms of use
Created on 2023-09-18 10:28:10